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Abstract
The MIEC La1.5Sr0.5Ni1-yFeyO4 (y=0.1-0.4) oxides have been studied as cathode
materials with La0.88Sr0.12Ga0.82Mg0.18O3−𝛿 (LSGM) electrolyte. Total conductivity,
thermal expansion, oxygen nonstoichiometry, and chemical compatibility with LSGM
and Ce0.8Sm0.2O1.9 (SDC) were determined. The following fuel cells were tested:
La1.5Sr0.5Ni1-yFeyO4 (y=0.1, 0.2, 0.3, 0.4)/SDC/LSGM/Sr2N0.75Mg0.25MoO6 (SNMM) and
La1.5Sr0.5Ni0.6Fe0.4O4/SDC/LSGM/SDC/NiO-SDC. For the former, the maximum power
densities were 218, 274, 222, and 390 mW/cm2 at 850 ∘C in case of y equal to 0.1,
0.2, 0.3, and 0.4, respectively. The latter cell showed maximum power density of 341
mW/cm2 at 850∘C.
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1. Introduction

La2NiO4+𝛿 with the K2NiF4-type structure is a mixed conductor with large oxygen
excess. It is considered as a promising cathode material for solid oxide fuel cells (SOFC)
due to a number of advantages such as relatively fast oxygen-ion transport via inter-
stitial oxygen ions, moderate thermal expansion, and high electrocatalytic activity.
Nevertheless, it has a few shortcomings such as relatively low total conductivity and
chemical incompatibility with various well-known electrolytes [1-3].
The effective way to modify properties in order to improve the cathode charac-

teristics of La2NiO4 is chemical doping. An acceptor-type strontium doping of La2NiO4
was extensively studied earlier [4-6]. The addition of strontium increases total con-
ductivity of the oxides, although it significantly diminishes oxygen content [5]. The
thermal expansion coefficient (TEC) of La2−𝑥Sr𝑥NiO4 in the 0<x<0.6 range is almost
constant and equals to 12-12.5×10−6 K−1 at 800∘C [4]. Donor-type doping of La2NiO4
and La2−𝑥Sr𝑥NiO4 by iron exhibits an opposite effect: gradual decrease of electric con-
ductivity along with the rise of interstitial oxygen concentration [7]. The TEC values
slightly increased with addition of iron [8].
Chemical compatibility of La2NiO4 with electrolytes such as YSZ, CGO, and LSGMwas

previously studied [2, 3]. Chemical reactions were observed in case of both YSZ and
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CGO electrolytes [2]. It was also shown that La2NiO4 was not chemically compatible
with LSGM electrolyte neither at fabrication conditions nor at operation ones [3].
Thus, the aims of this work are tomodify properties of La2NiO4 by simultaneous dop-

ing with strontium and iron and to estimate the performance of the La1.5Sr0.5Ni1-yFeyO4
(y=0.1-0.4) cathodes applied to the LSGM electrolyte-based SOFC.

2. Methods

The series of the La1.5Sr0.5Ni1-yFeyO4+𝛿 complex oxides (y=0.1-0.4) was synthesized via
citric-nitric technique as described elsewhere [9]. The phase purity of the samples was
confirmed by the XRPD analysis using Equinox 3000 (FWHM ∼ 0.05∘ at 2𝜃) instrument
with Cu-K𝛼 radiation at room temperature (RT). Observed XRPD data were refined by
the Le-Bail technique (profile-matching mode) using FullProf software. The absolute
values of oxygen non-stoichiometry were obtained in the thermogravimetric analysis
(TGA) setup (STA 409PCNetzsch GmbH) by reducing the samples at 1200∘C in H2/N2 gas
mixture with flow rate 100 ml/min. Thermal expansion of La1.5Sr0.5Ni1−yFeyO4+𝛿 was
investigated by high-temperature (HT) XRPD in air within 25-1100∘C temperature range
using HTK 16N (Anton Paar) HT-chamber installed at Equinox 3000 diffractometer.
Total conductivity of La1.5Sr0.5Ni1-yFeyO4+𝛿 was measured by the 4-probe DC technique
within 25-1100∘C temperature range in air. Chemical compatibility of the oxides with
electrolyte materials La0.88Sr0.12Ga0.82Mg0.18O3−𝛿 (LSGM) and Ce0.8Sm0.2O1.9(SDC) was
studied by mixing the cathode and electrolyte powders in a 1:1 weight ratio, following
by calcination at 1250∘C for 1 h and XRPD examination.
The powder of La0.88Sr0.12Ga0.82Mg0.18O3−𝛿 electrolyte was uniaxially pressed into the

pellet of 0.7 mm thickness and sintered at 1400∘C in air for 20 h. In order to avoid
possible chemical interaction between the La1.5Sr0.5Ni1-yFeyO4+𝛿 cathode and the LSGM
electrolyte the latter was preliminary coated by a layer of Ce0.8Sm0.2O1.9 buffer and
sintered at 1300∘C in air for 1 h. Sr2Ni0.75Mg0.25MoO6−𝛿 (SNMM), as well as NiO-SDC
cermet was used as an anode.
The cathode materials were preliminary sonicated in ethanol media for ten minutes

to reduce particle size and, thus, intensify a sintering process. The cathode and the
anode materials were painted on the opposite sides of the electrolyte pellet and sin-
tered at 1250∘C in air for 1 h. In order to separate the anode side, a single fuel cell
sandwich with attached Pt-wire current collectors was placed on an YSZ tube and
sealed using special high-temperature glass. The fuel H2 gas was fed inside of the
tube with the rate of 250 ml/min. The current-voltage (I–U) characteristics of the cells
were measured at 700, 750, 800, and 850∘C using a resistance box and the Agilent
34401A multimeter.

DOI 10.18502/kms.v1i1.564 Page 65



 

KnE Materials Science ASRTU Conference Proceedings

Composition a=b, Å c, Å V, Å3 TEC×10−6,K−1
(600-
800∘C)

𝛿

y=0 3.81065 [6] 12.7003 [6] 184.422 [6] 12.94 [4] -0.031 [4]

y=0.1 3.82156(5) 12.72034(21) 185.772(4) 13.72 0.04

y=0.2 3.83244(5) 12.71399(22) 186.738(5) 15.23 0.07

y=0.3 3.83387(10) 12.72142(33) 186.987(8) 14.87 0.09

y=0.4 3.85952(10) 12.69795(36) 189.147(9) 14.59 0.11

T˔˕˟˘ 1: The unit cell parameters, thermal expansion coefficient (TEC) and oxygen non-stoichiometry 𝛿
for La1.5Sr0.5Ni1−yFeyO4+𝛿 .

Figure 1: XRPD patterns of La1.5Sr0.5Ni0.9Fe0.1O4+𝛿-LSGM (A) and La1.5Sr0.5Ni0.9Fe0.1O4+𝛿-SDC (B) mixtures
after calcination at 1250∘C for 1 hour.

3. Results

XRPD confirmed that all La1.5Sr0.5Ni1−yFeyO4+𝛿 were single phase (no evidence of impu-
rities or starting materials was detected) possessing tetragonal structure (space group
I4/mmm). The refined lattice parameters are listed in Table 1.
XRPD pattern of the La1.5Sr0.5Ni0.9Fe0.1O4+𝛿-SDC mixture after calcination at 1250∘C

for 1 h exhibits no impurity peaks, indicating that there was no reaction between the
cathode and SDC (Fig. 1). On the contrary, XRPD profile of the La1.5Sr0.5Ni0.9Fe0.1O4+𝛿-
LSGM mixture reveals appearance of the lanthanum enriched products related to the
La3Ni2O7 and La4Ni3O10 structures (Fig. 1). Because of this interaction, SDC was used as
a buffer layer between the cathode and the electrolyte.
Figure 2 illustrates temperature dependencies of total conductivity represented in

the form of the ln(𝜎T) = f(1/T) plots. Total conductivity of the studied oxides shows
semiconductor behavior within the whole temperature range studied. The linear ln𝜎T
= f(1/T) dependencies indicate that conductivity in La1.5Sr0.5Ni1−yFeyO4+𝛿 is thermally
activated. The activation energy values lay within the 9.7-13 kJ mol−1 range, which is
characteristic of a small-polaron mechanism [10]. The total conductivity significantly
decreaseswith iron doping, which can be attributed to the hole trapping by iron cations
forming stable Fe3+ states [10].
The TEC values obtained from the HT XRPD results were calculated in approximation

of non-textured polycrystalline materials with randomly oriented crystallites [11]
according to the formula presented elsewhere [9]. The intermediate temperature
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Figure 2: ln𝜎T=f(1/T) dependencies of total conductivity for La1.5Sr0.5Ni1-yFeyO4+𝛿 cathodes.

range TEC values calculated from HT XRPD results for La1.5Sr0.5Ni1−yFeyO4+𝛿 are listed
in Table 1. One can observe that the TEC values firstly increase with iron doping and
then slightly decline at higher iron concentrations. The former phenomenon can be
explained by the size factor. Iron substitution leads to an expansion of the unit cell
due to larger radius of Fe3+ (r=0.645 Å) ions comparing to Ni3+ (r=0.56 Å) [12]. As a
result, the unit cell volume increases with y, which is followed by a growth of the TEC
values. The decrease of the TEC values in case of compositions with y=0.3, 0.4 is due
to higher interstitial oxygen concentrations: the release of interstitial oxygen from the
structure at elevated temperature suppresses thermal expansion of the material.
The TGA results show that all Fe-substituted La1.5Sr0.5Ni1−yFeyO4+𝛿 accommodate

oxygen excess in comparison to La1.5Sr0.5NiO4+𝛿 [4] (Table 1). The significant increase of
oxygen content with y can be attributed to the donor-type nature of the dopant: intro-
duction of iron (Fe3+) into the nickel (Ni2+) sublattice increases the trend to incorporate
negatively charged interstitial oxygen into the crystal structure in order to preserve
electroneutrality.
The electrochemical performances of single fuel cells are shown in Figure 3. The

open circuit voltage (OCV) decreases with temperature for all fuel cells. The experi-
mental OCVs were close to the theoretical values for all cells indicating a good densi-
fication of the LSGM electrolyte, no gas leakage, and absence of electronic conduction
across the electrolyte.
Figure 3 shows typical linear dependencies of the cell voltage vs. current den-

sity for the tested cells. One can observe that the output power density for each
cell rises with temperature. The maximum values of power density at 850∘C in the
case of SNMM anode have reached the values: 218, 274, 222, and 390 mW/cm2 for
La1.5Sr0.5Ni0.9Fe0.1O4+𝛿 (LSFN1), La1.5Sr0.5Ni0.8Fe0.2O4+𝛿 (LSFN2), La1.5Sr0.5Ni0.7Fe0.3O4+𝛿
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Figure 3: Voltage and power density versus current density for the fabricated fuel cells in H2 and static air
at different temperatures.

(LSFN3), and La1.5Sr0.5Ni0.6Fe0.4O4+𝛿 (LSFN4) cathodes, respectively. The maximum
power density at 850∘C in the case of NiO-SDC anode was equal to 341 mW/cm2 for
the La1.5Sr0.5Ni0.6Fe0.4O4+𝛿 (LSFN4) cathode.
It can be concluded that despite the significant decrease of total conductivity, the

performance of the La1.5Sr0.5Ni1-yFeyO4+𝛿 cathodes has been improved with the iron
doping. This could be attributed to an increase of interstitial oxygen concentration with
y, which, in its turn, benefits the oxygen-ion transport in the oxides [13].
The performance of the La1.5Sr0.5Ni0.6Fe0.4O4+𝛿/SDC/LSGM/SDC/NiO-SDC cell is

slightly improved in comparisonwith reported earlier results on the La2NiO4/LSGM/SDC
/Ni-SDC system (319 mW/cm2at 850∘C) [14]. However, it is important to notice that
thickness of the electrolyte in Ref. [14] was 0.4 mm, which is almost twice thinner
than that used in our study (0.7 mm). The reducing of the electrolyte thickness could
significantly increase the power densities of SOFC with the La1.5Sr0.5Ni0.6Fe0.4O4+𝛿 cath-
ode.

4. Conclusion

The La1.5Sr0.5Ni1-yFeyO4+𝛿 complex oxides (y=0.1-0.4) have been investigated as cath-
ode materials for potential application in SOFC with the LSGM electrolyte. The XRPD
results showed chemical incompatibility of the oxides with LSGM. In order to avoid
chemical reaction between the cathode and the electrolyte material, using of the
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Ce0.8Sm0.2O1.9 buffer layer was necessary. Total conductivity of La1.5Sr0.5Ni1-yFeyO4+𝛿
decreases with iron doping, but the obtained values are still adequate for that required
for cathode materials at SOFC [15]. The highest conductivity equal to 130 S/cm at 800∘C
was achieved for La1.5Sr0.5Ni0.9Fe0.1O4+𝛿. The thermal expansion coefficients are close
to that for LSGM electrolyte (12×10−6 K−1). Although the TEC values increase with
iron content, high thermal stability is still retained. The oxygen content was shown
to increase with y.
The LSGM electrolyte-based fuel cells with the La1.5Sr0.5Ni1-yFeyO4+𝛿 (y=0.1-0.4)

cathodes have been assembled. The best performances of 390 mW/cm2 and 341
mW/cm2at 850∘C were achieved for the La1.5Sr0.5Ni0.6Fe0.4O4+𝛿 cathode in pair with
Sr2Ni0.75Mg0.25MoO6 and NiO-SDC cermet anodes, respectively.
Finally, it can be concluded that simultaneous strontium and iron doping can improve

the performance of the La2NiO4-based cathode material. One would expect a signifi-
cant increase of power densities in comparison with the prototype while using a thin-
film electrolyte.
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