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Abstract
Magnetoresistive properties of 3d-metals alloys magnetostrictive films under
application of elastic deformations were investigated. Linear stress was shown to
have a significant effect on magnetoresistive effect in the films through the rotation
of the easy magnetization axis. Dependencies of the relative change of resistivity
were obtained in a cyclic deformation regime for films of different compositions.
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1. Introduction

Thin films found application in numerous sensors due to the wide variety of observed
properties and phenomena. One of the promising effects is elastomagnetoresistance,
which can be utilized in force or pressure sensors. This effect is observed in magnetic
materials demonstrating both anisotropic magnetoresistive effect (AMR) [1-5] and
magnetostriction [5-9]. In such materials magnetic anisotropy is changing in respond
to themagnetoelastic interaction and can be detected as a change of electric resistivity
due to the AMR effect.
Films of Fe10Ni90 and Co20Ni80 alloys are simple examples of elastomagnetoresistive

materials having high AMR effect (up to 5-6 % [10]) and magnetostriction of about 20
ppm [11]. However, polycrystalline films of these materials have relatively low induced
magnetic anisotropy [4], which is the reason for high magnetic hysteresis. This issue
can be solved by introduction of an additional exchange coupled antiferromagnetic
[12] of ferromagnetic [13] layer – the source of unidirectional magnetic anisotropy.
The presence of the strong exchange coupling was demonstrated to effect strongly
both magnetic anisotropy and hysteresis properties of the ferromagnetic layer [13].
In this work, elastomagnetoresistive properties of Fe10Ni90 and Co20Ni80 free layers as
well as FeMn/Fe10Ni90 and FeMn/Co20Ni80 with unidirectional anisotropy were investi-
gated.
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Figure 1: Schematic representation of samples layered structure and the experiment geometry.

2. Methods

Samples were synthesized by magnetron sputtering of target materials onto the Corn-
ing glass substrates (thickness of 0.2 mm). DC magnetic field was applied in the direc-
tion parallel to the substrate during the deposition in order to induce the easy mag-
netization axis (EA). Two types of samples were synthesized (presented schemat-
ically in Fig. 1). Type 1 samples are single-layer Fe10Ni90(80) and Co20Ni80(80) films
(thicknesses in nm are given in parenthesis). Type 2 samples are films consisting of
several layers X/Fe10Ni90(80) and X/Co20Ni80(80), where X is a group of auxiliary layers
Ta(5)/Fe20Ni80(5)/FeMn(20) responsible for unidirectional anisotropy in Fe10Ni90 and
Co20Ni80 layers.
Elastomagnetoresistive properties were investigated on 2x15 mm2 stripes cut per-

pendicular to the EA. Magnetic properties were measured by means of high-resolution
wide-field Kerr microscope. Tensile stress was applied by the controlled bending of
the stripes using micrometric translator (Fig. 1). Bending deflection (up to 120 𝜇m) was
measured by digital micrometer and converted to the linear tensile stress 𝛿 = Δ𝑙/𝑙.
Electric resistance was measured using standard four-probe method in the magnetic
field up to 160 Oe.

3. Results

Magnetooptical hysteresis loops obtained on type 1 and type 2 samples in
the unstrained state and after application of the tensile stress are presented in Fig.
2. Measurements were performed in the magnetic field oriented along (curves 1) and
perpendicular (curves 2) to the EA. Character of curves 1 and 2 implies the presence of
the uniaxial magnetic anisotropy for all samples. Besides, type 2 samples demonstrate
unidirectional anisotropy (Fig. 2b,d, curves 1) oriented in the direction parallel to the EA.
The presence of the unidirectional anisotropy led to the significantly reduced hysteresis
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Figure 2: Magneto-optical hysteresis loops measured for Fe10Ni90 (a), X/Fe10Ni90 (b), Co20Ni80 (c)
and X/Co20Ni80 (d) samples measured with the external magnetic field applied along (curves 1) and
perpendicular (curves 2) to the EA.
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Figure 3: Magnetoresistive loops measured perpendicular to the EA on Fe10Ni90 (a), X/Fe10Ni90 (b), Co20Ni80
(c), X/Co20Ni80 (d) samples in the unstrained state (curves 1) and after application of the tensile stress of
𝛿= 0.056 % (curves 2).

and enhancement of themagnetic anisotropy field compared to the free ferromagnetic
layers.
The described features of magnetization reversal observed for unstrained samples

can also be seen onmagnetoresistive hysteresis loops R(H) (Fig. 3, curves 1), measured
according to the scheme presented in Fig. 1. As one can see, R(H) loops corresponding
to the type 2 samples (Fig. 3b,d) show the same magnetic anisotropy enhancement
as in the single-layer films.
Application of the tensile stress leads to the substantial transformations of magne-

toresistive loops of both types of samples (Fig. 3, curves 2, 3). As can be seen, the
amplitude and the slope changes strongly for magnetoresistive loops measured with
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Figure 4: Dependencies of the relative change of electric resistivity ΔR/R on the applied magnetic field H
measured for 𝛿=0.05% on X/Fe10Ni90 (curve 1) and X/Co20Ni80 (curve 2) samples.
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Figure 5: Dependencies ΔR/R(𝛿)measured for (a) Fe10Ni90 (curve 1) and X/Fe10Ni90 (curve 2) samples; (b)
Co20Ni80 (curve 3) and X/Co20Ni80 (curve 4) samples in the external magnetic field H𝑚𝑎𝑥.

the external magnetic field applied perpendicular to the EA. These changes take place
due to the negative constant of magnetostriction, which is typical for the considered
compounds [6]. Magnetoelastic coupling contributes to the enhancement of the mag-
netic anisotropy of the film, which leads to the observed changes in magnetoresistive
loops.
Comparing curves 1 and 2 in Fig. 3, one can see that the sensitivity of magnetoresis-

tive effect depends on the value of the applied external magnetic field. To demonstrate
this effect, ΔR/R(H) dependencies measured on the deformed (tensile stress 𝛿 = 0.05
%) samples with unidirectional anisotropy are shown in Fig. 4. The obtained curves are
nonmonotonic and showmaximumvalue around zeromagnetic field for X/Fe10Ni90 and
X/Co20Ni80 samples. It should be noted, that although the maximum effect measured
on X/Fe10Ni90 film (curve 1) is lower than that of the X/Co20Ni80 film (curve 2), it has
better stability in the wide magnetic field range.
Dependencies of the relative change of resistivity on the value of the applied linear

tensile stress ΔR/R(𝛿) measured on type 1 (a) and type 2 (b) samples are presented in
Fig. 5. Here, we choose the external magnetic field H𝑚𝑎𝑥 corresponding to the maximal
ΔR/R value (Fig. 4). Measurements were performed in the cyclic deformation regime,
which allowed us to estimate hysteresis of the functional dependencies. The deforma-
tion range was limited by the maximum value of breaking stress of the glass (𝛿 ≤ 0.065
%). Dependencies ΔR/R(𝛿) measured for X/FeMn film (Fig. 5a, curve 2) demonstrate
almost zero hysteresis, comparing to the single-layer Fe10Ni90 film.
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For Co20Ni80-based films (Fig. 5b), hysteresis of ΔR/R(𝛿) dependencies is clearly
visible for both curves 3 and 4, which is a consequence of the overall higher magnetic
hysteresis comparing to Fe10Ni90 films. For all considered samples, strong nonlinearity
of ΔR/R(𝛿) dependencies is observed, which is to be expected taking into account the
mechanism behind the effect.

4. Conclusion

The investigation of elastomagnetoresistive properties of 3d-metal alloys films
demonstrated high magnetoresistive response to the application of the elastic tensile
stress as well as the possibility to reduce the magnetic hysteresis by implication of
the unidirectional anisotropy. Functional properties of the sensitive medium can be
further improved by optimization of the experimental geometry, value of the magnetic
field, and involvement of the controlled annealing. The obtained results show that the
elastomagnetoresistive can be successfully implied in force or pressure sensors.
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