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Abstract
In this work the results of measurements of heat capacity (CP) and magnetocaloric
effect (MCE) in Er(Co1-xFex)2 system in the concentration range 0.07 ≤ x ≤ 0.80
are presented. Phase composition was controlled by X-ray difraction analysis.
Heat capacity was measured in the temperature range 77-320 K. MCE has been
studied within the temperature range 5-670 K in magnetic fields up to 70 kOe.
It was found that Fe concentration increase caused the table-like (plateau) MCE
temperature dependence for both magnetic entropy change date and direct ΔT-effect
measurements independently on Fe concentration. The possible reasons of such
behavior are discussed.
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1. Introduction

RCo2 type binary compounds (R are the heavy rare earth elements) exhibit high mag-
netocaloric effect (MCE) or ΔT-effect at their magnetic phase transition temperatures
[1]. During magnetic properties and MCE studies of quasibinary R(M1-xFex)2 (M = Ni, Co)
ferrimagnets, it was found that a partial Co or Ni replacement by Fe caused a significant
MCE in a wide temperature range lower than Curie point (TC) [2]. Such their ability is
very attractive for magnetic refrigeration.
Our recent MCE measurements for some Ho(Co1-xFex)2 [2] compounds in the rela-

tively narrow range (0 ≤ x ≤ 0.20) confirmed that results and allowed suggesting the
reasons of MCE peak widening to the temperature range lower than their TC.
For more deep understanding of magnetic and MCE mechanisms formation in Er(Co-

Fe)2 compounds we have studied the magnetocaloric properties of such systems with
the Co substitution by Fe in the concentration range 0.07 ≤ x ≤0.80.

2. Methods

Er(Co1-xFex)2 alloysweremelted in induction furnacewith argon protective atmosphere
or in electric arc furnace under a pure helium protection. An excess of rare earth metal
(∼2 wt. %) was added to the starting compositions to prevent the formation of Co-rich
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Figure 1: Dependences of crystal lattice parameter (a) and Curie point (TC) on iron concentration (x). The
data for ErCo2 and ErFe2 are taken from [3-5].

phases. A homogenizing annealing of alloys was made in a vacuum furnace at 1220 K
during 7-32 hours. The structure of the samples was determined by X-ray diffraction
(D8 Advance, Bruker) with Cu K𝛼 radiation source. Diffraction patterns were analyzed
by Rietveld method using the “Fullprof” software.
Magnetic properties were measured using both a SQUID-magnetometer (MPMS-

XL-7, Quantum Design) in the magnetic field up to 70 kOe and a vibrating sample
magnetometer (7407, Lake Shore Cryotronics) in the temperature range 450-660 K
under amagnetic field up to 10 kOe. Heat capacity wasmeasured at zeromagnetic field
using adiabatic calorimeter with the relative error of± 0.6%. Direct MCEmeasurement
(ΔT-effect) was carried out using MagEq MMS SV3 experimental apparatus in the
magnetic field 17.5 kOe.

3. Results

Analysis of the X-ray diffraction data at room temperatures showed that all sam-
ples contained mainly the 1:2 phase. The crystal lattice calculation parameter (a) are
presented in Figure 1. The temperatures of magnetic transitions (TC) for the stud-
ied samples (Fig. 1) were determined from the positions of the dM/dT peaks on the
temperature axis, taken from the specific magnetization temperature dependencies
(M(T)) in the magnetic field of 0.1 kOe.
Taking into account the results of [5-7], it is possible to infer that the nonlinear TC(x)

dependences correlate with the mean magnetic moment of the 3d-ions subsystem
𝜇𝑑(x) in these compounds. Non-monotonic dependence TC(x) is correlated with the
dependence of the magnetic moment of the d-sublattice vs. concentration iron 𝜇𝑑(x).
Thus, we can conclude that d-d-exchange interaction dominates in these systems for
the whole Fe-concentration range except the region with x ∼ 0 only.
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Figure 2: On the left axis: CP(T) - experimental data (open symbols), Cel + Clatt - calculated lattice and
electronic contributions (dashed line), Cmag - magnetic contribution (filled symbols). On the right axis:
specific magnetization temperature dependences at 5 kOe.

3.1. Heat Capacity

In Figure 2 the experimental data on heat capacity temperature dependences CP(T)
are given for some studied samples. The algorithm of electron-lattice (Cel+Clatt) and
magnetic (Cmag) contributions calculations is presented in Ref. [2]. For Er(Co0.88Fe0.12)2
sample in the vicinity of TC point the maximum of CP(T) dependence is observed in a
wide temperature range. In the sample with a higher Fe concentration the maximum
of CP(T) dependence is observed in a wider temperature interval.
Such spread of Cmag(T) maximum reflects the emergence and existence of specific

magnetic disorder in a wide temperature range, which also is reflected on the specific
magnetization temperature dependences - M(T). It is worth noting that M(T) depen-
dences of Er(Co1-xFex)2system samples differ from the Weiss type and all have the
deflection with temperature rise, which correlates with Cmag(T) data.

3.2. Magnetocaloric Effect

The existence of magnetic disorder in studied compounds inferred from the analysis
of temperature dependences of heat capacity should be considered as a magnetic
entropy change (ΔS) in a wide temperature range. In Figure 3, temperature depen-
dences of magnetic entropy change ΔS(T) are presented. The ΔS(T) value was calcu-
lated using the formula from Ref. [8].
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Figure 3:ΔS(T) in magnetic fields (0-10) kOe. Inserts:ΔS(T) in magnetic fields (0-70) kOe. Arrows indicate
the TC point. The dash line – extrapolation.

It is seen that the magnetic disorder causes the appearing of table-like (plateau)
MCE at the T < TC. For compounds with x ≤ 0.20 this plateau is merged with the
MCE peak at TC point, thus presenting only one wide common peak. At the higher
Fe concentration, the MCE peak caused by the magnetic phase transition at TC point
is detached from the plateau area, which connected with some magnetic disorder in
R-sublattice. The same picture of plateau-likeΔS(T) dependence has been observed in
Ref. [9] for ErFe2.Besides, for the Er(Co1-xFex)2 samples with x≥ 0.40 themagnetization
compensation point was found in Ref. [4] accompanied by the reversed MCE.
Our the ΔS(T) experimental dependences for the magnetic field change of 10 kOe

are correlated with the direct ΔT-effect measurements data for the adiabatic external
magnetic field change of 17.5 kOe (Fig. 4).

4. Conclusion

We found that Fe concentration increase cause the following magnetothermal and
magnetocaloric properties changes in the studied systems:

1. A heat capacity maxima disappearing at TC point and emergence of magnetic
contribution to a heat capacity in a wide temperature range lower than this point;

2. The plateau-likeMCE temperature dependence for bothmagnetic entropy change
data and direct ΔT-effect measurements independently on Fe concentration.

To our mind, the mentioned MCE features in R(Co1-xFex)2 intermetallics originate
from the specific magnetic state of R-ions sublattice which belongs according of Belov
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Figure 4: Temperature dependencies of ΔT-effect. Arrows indicate the TC point.

classification [10] to a “weak” type. Due to that reason, the R-sublattices are partially
magnetically disordered in the range 0 K – TC (state similar for paramagnet), but able
to give a great response to the external magnetic field. Another possible reason is
the sperimagnetic structure formation in R-sublattices due to the local electric crystal
field change acting on R-ion from the Fe-ion neighbors; in other words, the deflection
of R-ions magnetic moments out from the global easy axis. In that case, the external
magnetic field aligns them, which produces the specific contribution to entropy. Found
experimental data are very important for the MCE mechanism origin understanding
and for design of novel and potential magnetic refrigerant materials working at room
temperature.
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