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Abstract
Marine natural gas hydrate (MNGH) accounts for 99% of the global hydrate resources,
90% of which are deposited in marine clayey silt sediments. MNGH has great
economic benefits; however, the large-scale commercial exploitation of hydrates is
severely restricted by technology. High-pressure- and low-temperature water jet
method is a new kind of MNGH solid exploitation method. This article represents
analysis of its characteristics and determination of the critical velocity by laboratory
experiment. Results show that the new method is feasible for MNGH exploitation, and
the present study can provide reference for subsequent MNGH exploitation research
and engineering applications.

Keywords: marine natural gas hydrate, solid exploitation method, high-pressure
water jet, critical velocity

1. Introduction

Natural gas hydrate (NGH) has always been considered an important potential energy
source. It has a wide distribution range, large resource reserves, and high energy
density, each volume of hydrate is typically equivalent to 160–180 volumes of methane
gas [1, 2]. With the increasing importance of natural gas in today’s energy structure,
possibility of exploitation of natural gas hydrates has become an international research
hotspot [3, 4]. Marine natural gas hydrate (MNGH) accounts for 99% of the global
hydrate resources, 90% of which are deposited in marine clayey silt sediments [5].
Because of its enormous reserves, hydrate in clayey silt sediments has great eco-
nomic benefits and development prospects [6]. However, the large-scale commercial
exploitation of hydrates is severely restricted by technology [7, 8]. In order to expand
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the hydrate technology reserves, it is very important to develop MNGH exploitation
technology [9, 10].

At present, the research on the exploitation technology of NGH and the develop-
ment of related production systems are still in the early stage [11]. Conventional NGH
exploitation methods mainly include depressurization, thermal stimulation, inhibitor
injection, CO2 replacement method, combined exploitation method, and solid exploita-
tionmethod [12, 13]. International NGH field production is shown in Table 1 [14]. The first
three ones use NGH instability dissociation characteristics to extract natural gas, while
the more recent CO2 replacement method, combined exploitation method, and solid
exploitationmethod have unique productionmechanism, corresponding to the suitable
hydrate-bearing area [15, 16]. In terms of research level, depressurization has been
extensively studied and widely recognized in many countries, and field production
tests have been carried out in many places [17]. Thermal stimulation and inhibitor
injection are no longer used alone because of the low efficiency. Other methods are
still in their infancy and further research is needed [18, 19].

Although many methods have been carried out in the field production tests, the
gap between theoretical research and practical engineering applications is still large
[20]. And current methods for MNGH exploitation are mainly used for hydrate in sand
sediments, which have certain limitations and cannot meet commercial production
requirements [21, 22]. Therefore, there are still many production mechanisms and pro-
cess technical problems that need to be solved, and there is an urgent need for safe,
efficient, and economical MNGH exploitation methods.

According to the characteristics of MNGH reservoirs, which meet the requirements
of high pressure water jet technology [23, 24], we propose high pressure and low
temperature water jet method for MNGH exploitation. In this article, we have assessed
the progress in current MNGH exploitation method research, MNGH trials exploitation
project, and project termination reason. Based on it, we have analyzed the research
status and characteristics of the solid exploitation method, which is recognized as a
promising new method. The high pressure and low temperature water jet method is
compared with the current methods to study its characteristics and analyze its advan-
tages and differences with other solid exploitation technologies. A self-developed
multi-functional rock crushed simulation test device has been used for high pressure
and low temperature water jet method test; we have analyzed its characteristics,
determined the critical velocity, and also analyzed its feasibility and prospect.
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T˔˕˟˘ 1: International NGH field production.

Time Location Reservoir Method Production
Time (days)

Total gas
production

(m3)

Termination
reason

1967 Messoyakha,
Russia

Sand
sediments

Inhibitor injection — — Completed,
Low

production
efficiency

2002 Mackenzie
Delta, Canada

Sand
sediments

Thermal
stimulation

5 463 Low
production
efficiency &

Sand
production

2007 Depressurization 0.5 830

2008 Depressurization 6 13000

2012 Alaska, USA Sand
sediments

CO2replacement 30 24000 Low
production
efficiency

2013 Eastern
Nankai

trough, Japan

Sand
sediments

Depressurization 6 119000 Severe sand
production

2017.5 Sand
sediments

Depressurization 12 35000 Severe sand
production

2017.6 Sand
sediments

Depressurization 24 200000 Completed,
low

production
efficiency

2017.5 South Sea,
China

Clayey silt
sediments

Improved
depressurization

60 309000 Completed,
low

production
efficiency

2017.5 South Sea,
China

Clayey silt
sediments

Solid exploitation
method

— — Completed,
low

production
efficiency

2. Methods

According to the low temperature, high pressure, shallow buried depth, and low con-
solidation characteristics of MNGH bearing sediments, which meet the requirements
of high pressure water jet technology [22, 23], we propose high pressure and low
temperature water jet method of exploiting MNGH. The MNGH bearing sediments are
cut and broken in the submerged environment by regulating the velocity, pressure,
and temperature parameters of water jet. The hydrate particles are transported by
hydraulic pipeline, and the safety dissociation of hydrates is controlled during the
mining process, so that the natural gas can be obtained.
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The high pressure and low temperature water jet method belongs to solid exploita-
tion methods. Compared with other current MNGH exploitation methods, it has the
advantages of solid exploitation methods [24]. Because the high pressure water jet is
used as the working medium, the method has the advantages of deeper exploitation
depth and smaller operation surface. Moreover, the broken particles are more uniform,
so there is also no need for the complicated grinding process on the seabed [25]. At
the same time, the friction loss of the mechanical rotary drilling tool is avoided [26].

We use a self-developed multi-functional rock crushed simulation test device for
studying high pressure water jet breaking of hydrate sediments. The test sample of
hydrate bearing sediments was synthesized using tetrahydrofuran (THF) and sea sand,
and the breaking test of THF bearing hydrate sediments under the high pressure water
jet was carried out to analyze characteristics and feasibility of high pressure and low
temperature water jet method.

This self-developed multi-functional rock crushed simulation test device is shown
in Figures 1 and 2. Technical indices of the test device are as follows. The maximum
pressure of the visible chamber reactor is 15 MPa, the size of the sample is 60 x 60
x 150 mm3, the maximum pressure of the constant speed and pressure pump is 25
MPa, the maximum working pressure of the high pressure water jet pump is 20 MPa,
the flow rate is 0 ∼ 2.5 L/min, the inner diameter of the water jet nozzle is 1 mm, the
precision error of the pressure sensor is superior to 0.2%F.S, the working temperature
of the constant temperature box is –20 ∼ 50∘C.

The experiment used THF solution of 99.9% purity, sea sand was washed and dried
by distilled water. The median diameter of sea sand was 1 mm after sieving. Saturation
of the sample is 50%. According to the equations (1–4), the amount of the solution was
calculated.

𝑉𝜑𝑠2 = 𝑉𝑠1 ∗ (𝐾 + 𝜑𝑎 − 1) (1)

𝑉𝑙 = 𝑉𝜑𝑠2
∗ 𝑆𝐻 (2)

𝑉𝑇𝐻𝐹 + 𝑉𝑤 = 𝑉𝑙 (3)

𝜌𝑇𝐻𝐹𝑉𝑇𝐻𝐹
𝜌𝑇𝐻𝐹𝑉𝑇𝐻𝐹 + 𝜌𝑤𝑉𝑤

= 19%, (4)

where 𝑉𝑠1 – volume of chamber, K – degree of compaction of sea sand, 𝜑𝑎 – accumu-
lation porosity of the sea sand, 𝑉𝜑𝑠2 – pore volume of the sample, 𝑉𝑙 – liquid volume,
𝑆𝐻 – saturation of the sample, 𝑉𝑇𝐻𝐹 – volume of THF, 𝑉𝑤 – volume of water.
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Figure 1: Multi-functional rock crushed simulation test device: 1 – control cabinet; 2 – pressure regulating
valve; 3 – confining pressure hand pump; 4 – gas injection hand pump; 5 – constant speed and pressure
axial pressure pump; 6 – incubator; 7 – visible chamber reactor; 8 – water jet pump; 9 – vacuum pump.

After calculation, the volume of sea sand was 866.44 cm3, THF was 24.78 ml, and
distilled water was 88.07 ml; the THF solution was configured for standby. The exper-
imental operation included the following operations:

1. mix the prepared THF solution with sea sand evenly, put it into the test chamber,
install the upper cover of the test chamber, and seal it;

2. connect the pipeline, set constant speed and pressure axial pressure pump to 3
MPa, set confining pressure to 1 MPa, and compact the sample;

3. after the compaction, check the tightness of the pipe and the thread interface,
put the reactor into the constant temperature water bath to synthesize hydrates.
The temperature of the water bath was set to –9∘C and the synthesis time was
24 h;

4. after the hydrate was completely synthesized, connect the water jet nozzle and
drainage pipeline. Set water jet flow velocity to 1100 ml/min (experiment 1), 1300
ml/min (experiment 2), 1500 ml/min (experiment 3), and 1700 ml/min (experi-
ment 4) separately, set the jet distance to 0.5 cm. Then open the high pressure
water pump to break the hydrate sediment, and keep the water jet during 30 s;
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Figure 2: Front view of visible chamber reactor: 1 – nozzle; 2 – tee coupling; 3 – upper cover; 4 – visible
chamber; 5 – sapphire window; 6 – support; 7 – axial pressure loading chamber; 8 – bottom cover.

5. after the experiment, open the upper cover and eliminate the residual liquid and
the broken sand. Then start observing the breaking effect, measure the broken-
rock volume, the breaking depth, and the diameter of the breaking pit.

3. Results

The 3D dimension of pit was measured after the water jet breaking experiment, the
result is shown in Table 2. With experiment 1 (flow velocity 1100 ml/min) as the basic
group, the broken-rock volume and depth of the pit increased with the increase of
the water jet flow velocity. The broken-rock volume increased by 28.40%, 31.73%,
and 36.50%, respectively, while the breaking depth increased by 7.85%, 3.99%, and
1.81%, respectively.
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T˔˕˟˘ 2: Experimental results of hydrate deposits under different jet flow conditions.

Experiment
Number

Parameter Experimental Result

Flow
Velocity
( 𝑚𝑙/𝑚𝑖𝑛)

Jet
Distance
(cm)

Hydrate
Saturation

(%)

Broken-rock
Volume (cm3)

Pit Depth
(cm)

Pit Diameter
(cm)

1 1100 0.5 50 81 7.9 5.07

2 1300 0.5 50 104 8.52 5.3

3 1500 0.5 50 137 8.86 5.82

4 1700 0.5 50 187 9.02 6.82

The pit crater and the shape of internal formwas observed. For experiments 1, 2, and
3, pit morphology had the same type, the diameter of the pit was obviously smaller
than the bottom diameter, and the size of the pit was different. In experiment 4, the
bottom of the pit was the same as that of the first 3 groups, but the surface of the
sample had a large area of breakage. In Experiment 1, the diameter of the pit was
2.71 cm and the maximum diameter of the bottom was 5.07 cm. In Experiment 2, the
diameter of the pit crater was 3.9 cm and the maximum diameter of the bottom was
5.3 cm. In Experiment 3, the length of the pit crater was 4.36 cm, the width of the
pit crater was 3.32 cm, and the maximum diameter of the bottom was 5.82 cm. In
Experiment 4, the diameter of the pit crater was 7.85 cm and the maximum diameter
of the bottom was 6.82 cm. Experimental breaking pits are shown in Figures 3–5.

Figure 3: Experiment 1 (1100 ml/min) breaking pit.
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Figure 4: Experiment 2 (1300 ml/min) breaking pit.

Figure 5: Experiment 3 (1500 ml/min) and experiment 4 (1700 ml/min) breaking pit.
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Figure 6: Jet flow and broken-rock volume diagram.

By analyzing the flow and broken-rock volume of water jet in the experimental of
Table 2, it was found that the water jet flow (x-axis) had a linear relationship with the
broken-rock volume (Y-axis). The fitted equation is:

V = 0.1585Q − 128.15. (5)

Jet flow and broken-rock volume diagram is shown in Figure 6.When V = 0, thewater
jet flow (Q) was the critical velocity of hydrate bearing sediments under the action of
water jet. Therefore, the critical breaking flow Qc = 808.5 ml/min. The diameter of the
nozzle d = 1 mm, and the critical breaking velocity of hydrate bearing sediments V𝐶 =
16.84 m/s.

4. Conclusion

Characteristics and critical velocity of high pressure water jet breaking hydrate bearing
sediments were studied. The three-dimensional size of the pit indicates that as the
flow rate of the water jet increases, the broken-rock volume, the pit depth, and the
internal diameter of the pit become larger. However, the growth rate of broken-rock
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volume increased and the growth rate of breaking depth decreased. The reason for
this phenomenon is that when the flow rate of the water jet increases, the radial
flow velocity generated by the water jet diffusion effect increases, strengthening the
scouring effect of the pit surface sediments and enhancing the radial direction of the
pit. The expansion causes the diameter of the lower part of the pit to become larger,
resulting in the growth rate of broken-rock volume increase. On the other hand, as the
breaking proceeds, the submerged fluid resistance and the reverse flow fluid flow rate
increase together, resulting in an increase of the water jet resistance, and decrease
of the energy for the downward crushing, so that the growth rate of the pit depth
becomes small.

The pit crater and internal shape were analyzed. This is because when the water jet
flow rate is increased, the scouring effect is stronger, and the flow velocity of return
fluid is bigger, which causes greater tensile stress on the contact surface, resulting in
a bigger surface cracking.

The critical breaking velocity of MNGH bearing sediments V𝐶 = 16.84 m/s, according
to the results of laboratory experiments, high pressure and low temperature water jet
method is feasible for hydrate exploitation.

As a new MNGH solid exploitation method, there are still many questions waiting
to be carried out of the transition from laboratory experiments to practical projects. In
the future, simulation experiments can be further improved; it is necessary to design
a complete set of mining processes, conduct economic analysis, and, finally, carry out
field experiments with a certain period of time.
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