
 

KnE Materials Science

MIE-2017
15th International School-Conference “New materials – Materials of innovative energy:
development, characterization methods and application’’
Volume 2018

Conference Paper

Misorientation Distribution Function of
Crystals
Skrytnyy V. I., Gavrilov M. V., Khramtsova T. P., Kolyanova A. S., Krasnov A. S.,
Porechniy S. V., and Yaltsev V. N.
National Research Nuclear UniversityMEPhI (Moscow Engineering Physics Institute), Kashirskoe
shosse 31, Moscow, 115409, Russia

Annotation
When studying the structure of polycrystalline materials, the misorientation
distribution function (MDF) is of great practical interest. In this paper we obtain
preliminary calculated data on the MDF taking into account the position of the main
maxima of the experimental orientation distribution functions (ODF) for recrystallized
iron, rolled materials with a copper, silver, α-Fe, and brass texture, and also α-Zr
based on direct pole figures of the rolled sample. It is shown that the proportion of
brass rotations close to special is the largest, and amounts to 50%. The region of
minimum rotations in the Euler space for cubic and hexagonal crystals is calculated.

1. Introduction

Most of the currently used industrial materials are polycrystalline, the properties of
which are determined not only by grains, but also by grain boundaries [1]. The grain
boundaries with orientational relationships that lead to the formation of coincident
site lattices (CSL) have extreme properties associated with the grain boundary energy,
grain boundary separations, migration of grain boundaries, slipping along grain bound-
aries, and so on. [2 - 4]. New materials with an increased content of such bound-
aries have improved properties, such as an increase in weldability by a factor of 50, a
decrease in creep by a factor of 16, an increase in the service life by a factor of four [6]
and an increase in the critical current by a factor of seven for high-temperature super-
conductors [7, 8]. In this connection, it is of interest to study methods for describing
materials using the function of mutual rotations.

2. Materials and methods

The crystallographic texture, described by straight pole figures, inverse pole figures
and the distribution function of orientations (DFO), characterizes the polycrystalline
ensemble with respect to the chosen external coordinate system of the sample. To
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describe the orientation relationships between crystals, it is necessary to consider the
(MDF). Since the mutual rotation of two grains can be specified by the rotation matrix
g with the rotation angle α and the rotation axis l or the Euler angles φ, θ, ψ, the
misorientations can be considered either in the crystallographic space the angle α-
axis l, or in the Eulerian space.

If we express the components of the matrix g in terms of the angle α and the
direction cosines of the rotation axis l, then the matrix g takes the form

𝑔(𝑙, 𝛼) =

|
|
|
|
|
|
|
||

𝑙21 (1 − cos𝛼) + cos𝛼 𝑙1𝑙2 (1 − cos𝛼) − 𝑙3sin𝛼 𝑙1𝑙3 (1 − cos𝛼) + 𝑙2sin𝛼

𝑙1𝑙2 (1 − cos𝛼) + 𝑙3sin𝛼 𝑙22 (1 − cos𝛼) + cos𝛼 𝑙2𝑙3 (1 − cos𝛼) − 𝑙1sin𝛼

𝑙1𝑙3 (1 − cos𝛼) − 𝑙2sin𝛼 𝑙2𝑙3 (1 − cos𝛼) + 𝑙1sin𝛼 𝑙23 (1 − cos𝛼) + cos𝛼

‖
‖
‖
‖
‖
‖
‖
‖‖

When using Euler angles 𝜙, 𝜃, 𝜓

𝑔(𝜙, 𝜃, 𝜓) =

|
|
|
|
|
|
|
||

cos𝜙cos𝜓 − cos𝜃sin𝜙sin𝜓 −cos𝜙sin𝜓 − cos𝜃sin𝜙cos𝜓 sin𝜃sin𝜙

sin𝜙cos𝜓 − cos𝜃cos𝜙sin𝜓 −sin𝜙sin𝜓 + cos𝜃cos𝜙cos𝜓 −sin𝜃cos𝜙

sin𝜃sin𝜓 sin𝜃cos𝜓 cos𝜃

|
|
|
|
|
|
|
||

Hamilton proposed a generalization of complex numbers x + iy in the form of quater-
nions (from Latin quaterni - four), consisting of a real element and three imaginary
units with real elements of the following form [9]: R = ν0 + ν1i1 + ν2i2 + ν3i3 = scalR +
vectR, where scalR = ν0, vectR = ν1i1 + ν2i2 + ν3i3.

When describing a rotation using an angle 𝜙 around axis with direction cosines l1,
l2, l3 of axis of rotation l and using Euler angles 𝜙, 𝜃, 𝜓 quaternion components R have
the form

𝜈0 = cos𝛼
2
= cos𝜃

2
cos𝜙 + 𝜓

2

𝜈1 = 𝑙1sin
𝛼
2
= sin𝜃

2
cos𝜙-𝜓

2

𝜈2 = 𝑙2sin
𝛼
2 = sin𝜃

2
sin𝜙-𝜓

2

𝜈3 = 𝑙3sin
𝛼
2
= cos𝜃

2
sin𝜙 + 𝜓

2

⎫⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪⎭

.
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If two successive rotations are given by quaternions L and M, in that L = λ0 + λ1i1 +
λ2i2 + λ3i3 and M = μ0 + μ1i1 + μ2i2 + μ3i3, then the resulting rotation N = LM describes
a quaternion N = ν0 + ν1i1 + ν2i2 + ν3i3, where

𝜈0 = 𝜆0𝜇0 − 𝜆1𝜇1 − 𝜆2𝜇2 − 𝜆3𝜇3

𝜈1 = 𝜆0𝜇1 + 𝜆1𝜇0 + 𝜆2𝜇3 − 𝜆3𝜇2

𝜈2 = 𝜆0𝜇2 + 𝜆2𝜇0 + 𝜆3𝜇1 − 𝜆1𝜇3

𝜈3 = 𝜆0𝜇3 + 𝜆3𝜇0 + 𝜆1𝜇2 − 𝜆2𝜇1

.

Consequently, the misorientations of the crystals can be specified:

• by matrix g(𝜙, 𝜃, 𝜓) with Euler angles 𝜙, 𝜃, 𝜓 ;

• by matrix g(𝜙1, 𝜙2, 𝜙3) with angles of rotation 𝜙1, 𝜙2, 𝜙3 the axes of the selected
Cartesian coordinate system;

• by matrix g(α, l) with an angle of rotation α about the axis l;

• by quaternion.

Euler angles are often used in the theoretical analysis of the motion of a rigid body,
the angles 𝜙1, 𝜙2, 𝜙3 – when the crystal is mounted on a goniometric head.

When studying the rotation of crystals, we are interested in the crystallographic
indices of the axis of rotation and the value of the rotation angle, so in the future the
parameters α and l or 𝜙1, 𝜙2, 𝜙3.

If any physical property is characterized by a function𝜓 (𝑟), then the theory of groups
makes it possible to determine the influence of the symmetry of the coordinate (in
the general case of a configuration space) on the properties of the function 𝜓 (𝑟). In
this case, because of the transformations R𝑖 physically equivalent functions appear
𝑃𝑅𝑖

𝜓 (𝑟), where 𝑃𝑅𝑖
– operator corresponding to R𝑖.

By Wigner’s rule 𝑃𝑅𝑖
𝜓 (𝑅𝑖𝑟) = 𝜓 (𝑟), or 𝑃𝑅𝑖

𝜓 (𝑟) = 𝜓 (𝑅−1𝑟).
When examining a grain rotation as a function 𝜓 (𝑟) acts as a rotation matrix A0, so

that matrices of equivalent rotations A𝑖 are determined as 𝐴𝑖 = 𝐴0𝑅−1
𝑖 , where 𝑅−1

𝑖 –

elements inverse to elements R𝑖 of groups of pure rotations [10]. Each element of
the group has one and only one inverse element, so if R𝑖 takes all the values of the
elements of the group of pure rotations, then R𝑖

−1 also takes all the values of the
elements of the same group, but in a different order. With considering A𝑗 = A0R𝑗 , where
R𝑗 – one of the elements of the corresponding group of pure rotations.
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When calculating equivalent rotations in polycrystals, quaternions are preferred.
Quaternions of elements of the group of pure rotations O and D6 for cubic and hexag-
onal crystals are presented in Tables 1 and 2.

Table 1: Quaternions of elements of the group of pure rotations O of a cubic crystal.

Element
of group

ν0 ν1 ν2 ν3 Element
of group

ν0 ν1 ν2 ν3

E 1 0 0 0 C[100]2 0 1 0 0

C[010]2 0 0 1 0 C[001]2 0 0 0 1

C[100]4
√2
2

√2
2 0 0 C[010]4

√2
2 0 √2

2 0

C[001]4
√2
2 0 0 √2

2 C[ ̄100]4
√2
2 -√2

2 0 0

C[01̄0]4
√2
2 0 -√2

2 0 C[001̄]4
;√2
2 0 0 -√2

2

C[111]3
1
2

1
2

1
2

1
2 C[ ̄1 ̄1 ̄1]

3
1
2 - 12 - 12 - 12

C[1 ̄11]
3

1
2

1
2 - 12

1
2 C[ ̄11 ̄1]

3
1
2 - 12

1
2 - 12

C[11 ̄1]
3

1
2

1
2

1
2 - 12 C[ ̄1 ̄11]

3
1
2 - 12 - 12

1
2

C[1 ̄1 ̄1]
3

1
2

1
2 - 12 - 12 C[ ̄111]3

1
2 - 12

1
2

1
2

C[011]2 0 0 √2
2

√2
2 C[110]2 0 √2

2
√2
2 0

C[101]2 0 √2
2 0 √2

2 C[01 ̄1]
2 0 0 √2

2 -√2
2

C[1 ̄10]
2 0 √2

2 -√2
2 0 C[10 ̄1]

2 0 √2
2 0 -√2

2

For a polycrystal, the set of all possible misorietation angles is a ball of radius π. The
rotation in this case is determined by a vector of length α along the axis l, given by
angles θ and φ. To determine the distribution density of the rotation angles P (α), it
is necessary to perform invariant integration [9, 11] with respect to the parameters θ
and φ, which determines the position of the rotation axes, within the volume of the
region of minimum rotations:

P(𝛼) =
(1 − cos 𝛼)∫𝑉 𝑒 sin 𝜃𝑑𝜃𝑑𝜙

4𝜋2 .

This integration corresponds to calculating the cross-sectional area of the region V𝐸

of minimal rotations by a sphere of radius α.
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Table 2: Quaternions of elements of the pure rotation group D6 of the hexagonal crystal.

Element
of group

ν0 ν1 ν2 ν3 Element
of group

ν0 ν1 ν2 ν3

E 1 0 0 0 C[ ̄12 ̄10]
2 0 – 12

√3
2 0

C[2 ̄1 ̄10]
2 0 1 0 0 C[ ̄1100]2 0 –√3

2
1
2 0

C[01 ̄10]
2 0 0 1 0 C[0001]3

1
2 0 0 √3

2

C[0001]2 0 0 0 1 C[000 ̄1]
3

1
2 0 0 –√3

2

C[10 ̄10]
2 0 √3

2
1
2 0 C[0001]6

√3
2 0 0 1

2

C[ ̄1 ̄120]
2 0 – 12 –√3

2 0 C[000 ̄1]
6

√3
2 0 0 – 12

Fig. 1-3 shows the distribution density of the misorientations P(α) for cubic and
hexagonal crystals.

Figure 1: The density distribution of the misorientation angles P(α) for cubic crystals.

For certain rotation parameters, there are coincidence lattices, and if the boundary
coincides with the most densely packed plane of the coincidence lattice, then the
energy of the boundary is minimal.
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Figure 2: The density distribution of the misorientation angles P(α) for hexagonal crystals.

Figure 3: The density distribution of the misorientation angles P(α) for cubic and hexagonal crystals.

Special properties of the grain boundaries are preserved for small deviations of
the misorientations of neighboring grains from a special one. The maximum devia-
tion angle (in radians) from a special orientation, when accommodation with grain
boundary dislocations is still possible and special properties are retained, is defined as

Δ𝛼 = 10 ÷ 15
𝜋√Σ

.

Fig. 4 shows in the standard triangle themisorientations of the cubic lattices creating
the CSL with Σ <150.
Fig. 5-6 shows the distribution of the rotations corresponding to the appearance of

coincident site lattices for cubic and hexagonal crystals.
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Figure 4: Distribution of misorientations corresponding toemergence of coincidence site lattices with Σ
<150, for cubiccrystals.

Figure 5: Distribution of misorientations corresponding to emergence ofcoincidence site lattices to Σ = 25
for cubic crystals on the sides of thestandard stereographic triangle.

3. Results

Preliminary calculated data on the MDF taking into account the position of the main
maxima of experimental orientation distribution functions (Fig. 7) for rolled materials
with a copper-type texture (Fig. 8), silver (Fig. 9), α-Fe (Fig. 10) and brass (Fig. 11).
On the charts rotation axis – the minimum rotation angle, the positions of the special
rotations with Σ ≤ 25 are also shown.
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Figure 6: Distribution of misorientations corresponding to emergence ofcoincidence site lattices to Σ = 23
for hexagonal crystals on the sides of the standard stereographic triangle.

Figure 7: Orientation distribution functions for different types of textures: a) recrystallized iron, b) rolled
iron, c) rolled copper, d) rolled brass.

MDF can be represented in space by the axis of the turn in the stereographic triangle
- the minimum rotation angle.

Fig. 12 - 13 presents preliminary data on ODF for α-Zr on the basis of analysis of the
pole figures of the rolled α-Zr sample.

In texture analysis, the orientation distribution function is usually considered in Eule-
rian space with angles φ, θ, ψ varying in the interval 0 - π/2. When using the MDF
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Figure 8: Distribution of misorientations in the angle-axis space for Cu rolling texture (• – rotations of Cu
crystals and × – their projections, • – special rotations and ∘ – their projections).

Figure 9: Distribution of misorientations in the angle-axis space for Ag rolling texture (• – rotations of Ag
crystals and × – their projections, • – special rotations and ∘ – their projections).

in Euler space, it is desirable to determine the region corresponding to the minimum
misorientation angles.

For cubic crystals, a region with Euler angles φ, θ, ψ varying in the interval 0 - π/2
is basically determined by an equivalent rotation due to the symmetry element C4−𝑥,
and for hexagonal crystals by symmetry elements C[0001]6 and C[0001]3 (Fig. 14).

The regions of the Eulerian space corresponding to the minimum misorientation
angles for cubic and hexagonal crystals are shown in Fig. 15, 16.
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Figure 10: Distribution of misorientations in the angle-axis space for α-Fe rolling texture (• – rotations of
α-Fe crystals and × – their projections, • – special rotations and ∘ – their projections).

Figure 11: Distribution of misorientations in the angle-axis space for brass rolling texture (• – rotations of
brass crystals and × – their projections, • – special rotations and ∘ – their projections).

4. Discussion

The nature of the distribution ofmisorietations in the Eulerian space for thesematerials
is quite similar: the rotations are located mainly in a certain part of the volume - the
most uniform distribution is observed in α-Fe, the remaining materials exhibit areas of
increased concentration of rotations. The arrangement of small-angle rotations (α <15
∘) is analogous for all materials near the [100] axis in a small region corresponding to
Σ = 5.

Some differences in the distribution of the rotations are observed when they are
represented in the space by the angle-axis of the rotation, while the rotations occupy
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a) 

 
b) 

Figure 12: Mutual rotation function for rolled α-Zr in space angle α-axis l for cross sections α a) 0∘ – 5∘; b)
5∘ – 10∘.

not the entire region of the stereographic projection but are located closer to its bound-
ary [100] - [111]. The greatest concentration of rotations near Σ = 5 is observed in α-Fe.
Silver rotations are the most uniform distribution in the whole area of their location.
In the copper rotations, ignoring of special rotations with Σ = 21, 23 is observed, and it
is clearly visible that there are no rotations around the axes of these boundaries.

The angles of misorientations for brass are located closer to the rotations corre-
sponding to the occurrence of coincidence grids. The share of misorientations close to
special ones: Cu - 20%, Ag - 30%, α-Fe - 24%, brass - 50%.

The region of the minimum angles of equivalent turns in a cubic crystal in the region
of Euler angles φ, θ, ψ varying in the interval 0 - π/2 has the form of a hexagonal prism
with a base in the plane θ = 0 ∘, height θ = 45 ∘, with a pyramidal peak. The edges of
this prism correspond to the edges of this region and to the planes φ - ψ = 45 ∘ and
φ - ψ = -45∘. The maximum of the pyramidal peak is at the center of this region of
the Eulerian space, and corresponds to θ = 60∘. For hexagonal crystals, the region of
minimum angles is in the form of three hexagonal prisms with flat tops, a height θ =
90∘.

In the region of Euler angles φ andψ from -π/2 to + π/2, a similar picture is observed.
Both for cubic and hexagonal crystals in the region of negative φ and ψ there is a copy
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a) 

 

b) 

Figure 13: The misorientation distribution function for rolled α-Zr in the Eulerian space a) 𝜃15∘ – 20∘; b) 𝜃20∘

– 25∘.

of the prism from the positive region. However, there is one peculiarity, namely, the
existence of a slope plane in the region of negative ψ, whose base line goes from the
point φ = 30∘, ψ = 0∘ to the point φ = 0∘, ψ = -90∘ and increases in the direction of ψ and
decreasing φ. The reason for its occurrence is probably the singularity of the Eulerian
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a) 

 
b) 

Figure 14: The regions of minimum angles of equivalent rotations in the orientation space for cubic (a)
and hexagonal crystals (b).

space, in which the angles φ and ψ for small values of θ correspond to rotations around
close to each other axes.

It is interesting to note that there is a certain similarity between the graph of the
distribution density of the misorientation angles P (α) and the form of the regions
of minimal angles of equivalent rotations. Thus, the position of the maximum of the
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a) 

 
b) 

Figure 15: a) The region of the minimum rotation angles for cubic crystals in the Eulerian space (half is
shown corresponding to the positive values of θ); b) cross-sections of the region of the minimum angles
of rotation at angles θ for cubic crystals in the Eulerian space.

angular distribution density coincides in magnitude with the height of the prism in the
Eulerian space for both cubic and hexagonal crystals.
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a) 

 

b) 

Figure 16: a) The region of the minimum rotation angles for hexagonal crystals in the Eulerian space (half
is shown corresponding to the positive values of θ); b) cross-sections of the region of the minimum angles
of rotation at angles θ for hexagonal crystals in the Eulerian space.

5. Conclusion

In this paper we obtain preliminary calculated data on the MDF taking into account the
position of the main maxima of the experimental orientational distribution functions
for recrystallized iron, rolled materials with a copper, silver, α-Fe, and brass texture,
and also α-Zr based on direct pole figures of the rolled α-Zr sample. The region of
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minimum rotations in the Euler space for cubic and hexagonal crystals is calculated.
The results obtained can be used in further studies.
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