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RNA-seq using the Next Generation Sequencing (NGS) approach is a common
technology to analyze large-scale RNA transcript data for gene expression studies.
However, an appropriate bioinformatics tool is needed to analyze a large amount of
transcriptomes data from RNA-seq experiment. The aim of this study was to construct
a system that can be easily applied to analyze RNA-seq data. RNA-seq analysis tool
as SMART-RDA was constructed in this study. It is a computational workflow based on
Galaxy framework to be used for analyzing RNA-seq raw data into gene expression
information. This workflow was adapted from a well-known Tuxedo Protocol for
RNA-seq analysis with some modifications. Expression value from each transcriptome
was quantitatively stated as Fragments Per Kilobase of exon per Million fragments
(FPKM). RNA-seq data of sterile and fertile oil palm (Pisifera) pollens derived from
Sequence Read Archive (SRA) NCBI were used to test this workflow in local facility
Galaxy server. The results showed that differentially gene expression in pollens might
be responsible for sterile and fertile characteristics in palm oil Pisifera.

FPKM; Galaxy workflow; Gene expression; RNA sequencing.

The Next-generation sequencing (NGS) has been rapidly developed in recent years,
providing much cheaper and higher throughput than the earlier generation Sanger
sequencing [1]. This technology allows rapid advance in many fields related to biolog-
ical sciences, one of them is the RNA sequencing (RNA-seq) experiments [2]. Consid-
ered as an alternative to microarrays, RNA-seq is now used for quantitative transcrip-
tomics and identification of novel transcripts. It is a powerful tool with a remarkably
diverse range of applications, from detailed studies of biological processes at the cell
type-specific level to studies of fundamental questions in many biological systems on
an evolutionary timescale [3].

The computational challenges of RNA-seq data analysis are divided into three main
categories: (i) read mapping, (ii) transcriptome reconstruction, and (iii) expression
quantifications [4]. Read mapping process is divided into two types, unspliced and
spliced alignment. Unspliced alignment uses reads and reference transcriptomes as
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input. It aligns reads to a known reference transcriptome. Some examples of unspliced
aligner programs are Short-read mapping package (SHRiMP) [5], Bowtie [6] and BWA
[7]. On the other hand, spliced aligner uses reads and reference genome as input.
TopHat is an example of widely used spliced aligners program to process RNA-seq
reads [8].

The aim of transcriptome reconstruction is to define a precise map of all transcripts
and isoforms that are expressed in particular samples. Cufflinks is one of the most used
genome-guided assembly programs for transcriptome reconstruction that identifies
novel transcripts using a known genome [9]. Unlike Cufflinks, Velvet [10] and Trans-
ABySS [11] identify novel genes and transcript isoforms without a known reference
genome. The final step of RNA-seq data analysis is expression quantification. Alexa-
seq uses reads and transcript models to quantify gene expressions [12] while cufflinks
use aligned reads to quantify transcript isoform levels. There are several differential
expression programs to compare expression levels between two or more sets of tran-
scriptomes, including Cuffdiff [13]. The programs use read alignments and transcript
models to identify differentially expressed genes or transcript isoforms.

Most of the programs described above have been used to analyze RNA-seq raw
data because they are powerful and open for public. However, at least three steps
of command writings is needed to obtain transcript level information. This can be
problematic for biologists who are not familiar with command writings and it also
has a huge amount of parameters and raw data that need to be analyzed. Galaxy
platform is available to simplify this kind of work [14]. It uses a web interface to
cloud computing resources, providing command-line-driven tools, such as TopHat and
Cufflinks, for users without UNIX skills through the web and the computing clouds.

This study aims to construct SMART RNA-seq Data Analyzer (SMART-RDA), a Galaxy
workflow that can be easily applied to analyze RNA-seq raw data into differential
expression information of genes. A well-known Tuxedo protocol was used as the back-
bone of this workflow. Few additional tools and modifications were added to turn this
workflow into a more comprehensive and user-friendly tool.

2.1. Material

This study utilized two files from Sequence Read Archive (SRA) [15] derived from NCBI
under ID SRX278051 and SRX278050 to test the workflow performance. These files are
the RNA sequence of sterile and fertile oil palm Pisifera pollens. Each sequence con-
tains 228.3 and 295.4 x 10° million bases, respectively. Programs used in this research
are Galaxy, TopHat, Cufflinks, Cuffdiff, and CummeRbund, which were downloaded
from their official websites. Galaxy tools were downloaded from Galaxy ToolShed
(https://toolshed.g2.bx.psu.edu/).
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Figure 1: Workflow Steps.

2.2. Methods

This workflow was constructed based on a well-known Tuxedo protocol. The Quality
Control stage was added before performing tuxedo protocol to improve the quality
of reads. Detailed steps of the workflow are shown in Figure 1. Blast annotation step
was added after Cuffdiff to annotate the assembled transcripts. Common tools in this
workflow, like TopHat, Cufflinks, and Cuffmerge were available on the galaxy toolshed.
Several tools that were not available in the galaxy toolshed were constructed using
XML programming.

3.1. SMART-RDA Workflow

A Galaxy workflow for RNA-seq data analysis was constructed (see Figure 2) from a
modified Tuxedo protocol. The first tool of this workflow is FastQ Groomer. It converted
several input Fastq quality score types, like lllumina 1.8 and 454, into standard Sanger
format [16]. Groomed fastq file was trimmed using FastQ Quality Trimmer. This tool
trimmed the end of reads based on the aggregate value of quality scores found within
a sliding window. FastQ Summary Statistics were used to create summary statistics on
a fastq file before and after trimming by FastQ Quality Trimmer.

After groomed and trimmed, the reads were assembled using TopHat. Fasta file
of reference genome was needed for this stage. TopHat aligned RNA-seq reads into
genome-sized sequence using the ultra-high-throughput short read aligner Bowtie,
and then analyzed the mapping results to identify splicing junctions between exons.
The output of TopHat was BAM file called accepted hits. BAM to SAM converter was
needed to convert TopHat output into SAM formatted file [17]. The conversion process
of BAM to SAM allowed users to review TopHat output directly.

The aligned reads from TopHat output were assembled by Cufflinks. This program
assembled reads into transcripts, estimated their abundances, and tested them for
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Figure 2: SMART-RDA Workflow.

differential expressions and regulations. This process produced GTF files that contain
Cufflinks assembled isoforms. These files contained information of assembled reads,
transcripts, and their abundances. The workflow produced two Cufflinks output files
at one time because it was designed to process two different samples simultaneously.
However, Cuffmerge was still needed to merge two GTF files produced by Cufflinks.

The process of finding significant changes in transcript expression was performed
by Cuffdiff. In this stage, aligned reads produced by TopHat were quantified using
assembled transcript produced by Cufflinks as a reference. The outputs of this step
were tabular files that contained information about transcripts location, expressions,
and differential analysis. The expression level of each transcript was stated in term of
Fragments Per Kilobase of exon per Million fragments (FPKM). In these units, the rel-
ative abundances of transcripts were described in terms of expected biological object
(fragments) observed from RNA-seq experiment.

The next stage in this workflow was to annotate each transcript previously ana-
lyzed by Cuffdiff. The annotation process used NCBI BLAST+blastn [18, 19] to search
annotation from known databases. Information about locus position of transcripts from
Cuffdiff outputs was used to extract transcript sequences from a reference genome.
Blast results produced in this process were then combined as an annotation into Cuffdiff
output. The final stage of the workflow was visualization of transcript quantification
and differential analysis using cummeRbund. This tool produced several visualizations,
including boxplot, scatters, distributions, and volcano plots.

3.2. Workflow performance test

SMART-RDA workflow was tested using two files from NCBI SRA of oil palm Pisifera
pollen RNA-seq under ID SRX278051 (fertile) and SRX278050 (sterile). The fertile reads
size was 472.6 Mb while the sterile reads was 613.2 Mb. After trimming, the size of
fertile reads decreased to 295.2 Mb and the sterile reads to 486.6 Mb. This stage
removed 176 low-quality sequences from fertile and 112 from sterile reads.

Tuxedo protocol has been successfully implemented by this workflow. The Cum-
meRbund stage produced four type visualizations that represented the differential
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Figure 3: Boxplot of differential gene expressions of fertile and sterile oil palm Pisifera pollens.
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Figure 4: Density plot of differential gene expressions of fertile and sterile oil palm Pisifera pollens.

expression between two conditions. The first visualization was a boxplot of differ-
ential gene expressions (see Figure 3). Based on this plot, the average value of FPKM
between fertile and sterile pollen was almost the same. In terms of range, fertile pollen
had wider ranges of gene expression values.

The other type of visualization was density plot, as shown in Figure 4. This plot
showed the differential gene expression patterns between fertile and sterile Pisifera
pollens. The gene expression of sterile pollens was distributed in lower fpkm values,
but with higher density than fertile pollens.
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Figure 5: Volcano plot describes differential gene expression of fertile and sterile oil palm Pisifera pollens.

While boxplot and density plot described expression distributions, volcano plots (see
Figure 5) described significant level of each transcript. Volcano plot showed several
transcripts with higher expression in fertile than in sterile condition.

Finally, the most important result of this workflow was the list of genes with large
difference in gene expressions (see Table 1.). There were ten genes with high signifi-
cant expression levels. The level significance of differential expression was determined
by P value. Furthermore, this data would be useful in determining the genes that
played a role in palm pollens fertility.

SMART-RDA, a galaxy workflow that can be used to analyze RNA-seq data into dif-
ferential expression information, was constructed based on modified Tuxedo protocol.
Performance test using SRA data of fertile and sterile oil palm Pisifera pollens detected
ten genes with high significant expression levels. Three visualizations and one table
describing expression condition of samples were produced by this workflow, which
was capable of performing differential analysis of large RNA-seq data.
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Locus Genes FPKM p value
Fertile Sterile

EG5_Chr8:33574178-33580606 ubiquitin-conjugating enzyme [Elaeis 52 905 0 0.02210
guineensis]

EG5_Chr5:26736162-26736842 beta-1,3-glucanase [Elaeis guineensis] 38 158 0 0.02395

EG5_Chr14:2597123-2598066  elongation factor 1-alpha, putative 22 501 0 0.02570

[Ricinus communis]

EG5_Chr3:1054681-1056044 uncharacterized protein LOC100812783 0 13 788.6 0.02780
[Glycine max]

P5_5€00292:963590-964056  putative elicitor inducible o 13 672.6 0.02780
beta-1,3-glucanase NtEIG-E76 [Oryza
sativa Japonica Group]

EG5_Chr3:28391917-28399716 ribosomal protein [Elaeis guineensis] 0 12 611.8 0.02780

EG5_Chr13:23110722-23111204 DUF246 domain-containing protein 0 22 311.8 0.02820
[Medicago truncatula)

EG5_Chr13:27541179- 27541819 PREDICTED: elongation factor 1-alpha 0 12 161.8 0.02820
[Vitis vinifera]

EG5_Chr1:3675588-3675755 uncharacterized protein LOC100276758 1844460 o} 0.03080
[Zea mays]

EGs_Chr16:1554435-1555188  hypothetical protein Osl_32485 [Oryza 27908 o) 0.03080
sativa Indica Group]

TABLE 1: List of genes with high significance level of expressions.
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