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Phalaenopsis amabilis (L.) Blume is an indigenous orchid species in Indonesia. This
orchid has a white large flower. The large flower is caused by the existence of gene
that has an important role in flower development. One of the genes is SEPALLATA
1. This gene is @ member of superfamily MADS-Box gene. SEPALLATA 1 gene is a
marker of primordial flower organ. This study aimed to isolate SEPALLATAT gene from
Phalaenopsis amabilis (L.) Blume by PCR using forward primer 5'-GCT-GGA-GCG-GAT-
CGA-GAA-CA-3'and reverse primer 5'-TCA-TGC-AAG-CCA-ACC-AGG-TG-3". This study
successfully amplified 691 bp lengths of SEPPALATAT fragment, lacking 20 bp upstream
which consist its start codon.

Flower development regulation; Phalaenopsis amabilis (L.) Blume;
SEPALLATA 1 gene.

Phalaenopsis amabilis (L.) Blume is a member of the family Orchidaceae. This orchid
has unique flower form [1, 2]. The sepal is white-colored like the petal, but it has a
different form. The sepals are ellipse to acute shaped while the petals are widened
circular with a small base and dull top, one of petal modified to be labellum form. The
labellum has a pale yellow color to dark yellow with red stripes on the inside [3, 4].
There are stamen and pistil in the gynostemium [5].

The flowers begin to develop from primordial organ on apical and axillary shoots
[6]. In the initial primordial stage, the sepals are smaller than the leaves and petals
and stamen is even smaller. Size reduction of the primordial form goes along with its
formation change. Primordial on the top will conduct the phyllotaxis. There are three
flower circles with 120° difference between flower sections in monocotyledons [7].

Flower development encoded by morphogenesis genes. One of the morphogenesis
encoding genes is SEPALLATA (SEP). SEP is a member of superfamily MADS-box [8, 9].
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SEP gene consists of SEP1, SEP2, SEP3, and SEP4 [10-14]. This gene plays role in flower
primordial organ regulation, determining flower sections from the meristem of flower
candidate [15, 16]. SEP1, SEP2 and SEP4 are expressed in meristem primordial flower;
SEP1, SEP2 are expressed in all of flower primordial organ; SEP3 is expressed in third
circle (stamen) and SEP4 expressed in center of flower circle (carpel) [13].

In Arabidopsis thaliana (L.) Heynh. SEP gene plays determining role on petal, stamen
and carpel candidate [17]. In Dendrobium crumenatum Sw. it is called DcSEPT [18] and in
Phalaenopsis equestris (Schauer) Rchb.f it is called PeSEPT [9]. The genes play the role
of sepal, petal, and labellum forming [9, 18, 19]. This study aimed to isolate SEPALLATA1
gene from Phalaenopsis amabilis (L.) Blume.

2.1. Plant material

Phalaenopsis amabilis (L.) Blume samples were collected from DD’ Orchid Nursery,
Dadaprejo, Batu. Indonesia.

2.2. DNA extraction

Total DNA was extracted from young leaves using Geneaid Genomic DNA Mini Kit
(Plant) protocol with some modification in incubation duration (about 4 h) and
Proteinase-K addition.

2.3. SEP1 gene amplification

The primer was designed based on the conserve region in P. equestris. The pair of
oligonucleotides was Forward F1: (5’ATG GGA AGA GGG AGA GTG GA-3’), Forward F2:
(5'GCT GAA GCG GAT CGA GAA CA-3’) and Reverse R1: (5'TCA TGC AAG CCA ACC AGG
TG-3). PCR reactions were carried out in a total volume of 50 uL. SEPT gene was
amplified using Qiagen Rotor-Gene Q. DFR gene amplification was done with 40 cycles
of PCR which was initiated by template DNA initial denaturation at 94°C for 5 min, then
followed by denaturation 94°C for 20 s, annealing at 56°C for 20 s, extension at 72°C
for 50 s, and final extension at 72°C for 5 min. PCR product was examined using 1%
agarose gel electrophoresis then checked using UV Transilluminator.
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Figure 1: SEP1 sequence from Phalaenopsis amabilis (L.) Blume using F2/R1 oligonucleotides pair.

2.4. DNA sequence analysis

The sequencing of SEP7 gene was carried out in First BASE Laboratories, Malaysia.
DNA sequence were analyzed with FinchTV to read the chromatogram of sequencing
product, DNA Baser to make a consensus sequence, Basic Local Alignment Search Tool
(BLAST) to check the compatibility between target gene and query from Gene Bank,
ClustalX to make multiple alignment between SEP7 gene in P. amabilis, P. equestris and
other species.

The targeted SEP1 sequence from P. amabilis could not be amplified using F1/R1
oligonucleotides pair. Nevertheless, this study acquired SEP7 sequence of 691 bp length
using F2/R1 pair (Figure 1).

The acquired DNA sequence then compared to SEPT gene from P. equestris to deter-
mine their similarity index. BLAST analysis showed no similarity between P. amabilis
and P. equestris. Mega 6 analysis showed 22.45% similarity between P. amabilis and
P. equestris. SEP1 encodes of the sepals, petals and labellum. The low similarity index
caused the different shape of sepals, petals and labellum between P. amabilis and P.
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Figure 2: The differences between P. amabilis with P. equestris. (A) Flower of P. amabilis (B) Flower of P.
equestris.

Species 1 Species 2 Dist Std. Err Similarity index (%)
P. amabilis ~ P. equestris 0.775 0.051 22.45326558
E. grandis P. amabilis 0.885 0.062 11.48317698

N. nucifera  P. amabilis 0.922 0.066 7.772061
A. thaliana  P. amabilis 0.926 0.065 7.39735856
M. domestica P. amabilis 0.935 0.066 6.540036
T. hasslerania P. amabilis 0.937 0.067 6.275825
C. sativa P. amabilis 1.076 0.080 —7.563754132

TABLE 1: Levels of gene similarity SEPALLATA 1 Phalaenopsis amabilis (L.) Blume with various gene SEPALLATA
1 of several species.

equestris (Figure 2). The similarity index of SEP7 sequences between P. amabilis and P.
equestris is shown in Figure 3.

Alignment results showed that there are many differences between SEP7 bases from
P. amabilis and SEP1 bases from P. equestris, including some discovered gaps. There are
some gaps in 19th to 21st, 65th and 99th to 104th base of SEP7 sequences between P.
amabilis and P. equestris, and another gaps in 45th, 85th to 88th and 130th base. This
study could not amplify the start codon of P. amabilis due to failed F2/ R1 amplification
of which the start codon be.

SEP1 in P. amabilis was also compared to various species taken from Gene Bank
databases, namely Arabidopsis thaliana, Camelina sativa (L.) Heynh., Eucalyptus grandis
W. Hill ex Maiden, Malus domestica Mill, Nelumbo nucifera Gaertn. and Tarenaya hass-
leriana (Chodat) lltis to analyze their similarity (Tabel 1).

The 691 bp length of SEPALLATA 1 gene was isolated from Phalaenopsis amabilis (L.)
Blume F2/R1 oligonucleotide pair. The start codon of the sequence could not be
obtained. The similarity index between SEPALLATA 1 gene in Phalaenopsis amabilis
(L.) Blume and Phalaenopsis equestris (Schauer) Rchb.f is 22.45%.
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Figure 3: Sequence alignment of SEPALLATA 1 from P. amabilis and SEPALLATA 1 from P. equestris; (*):
conserved gene sequence; (:): different gene sequence; (-): unknown gene sequence.
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