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Abstract
The paper presents a mathematical modeling of the process of movement of milk in the
pipe in the formation of the slug flow. The estimation of the degree of destabilization
of milk fat from hydromechanical factors is presented, which is 6-10% for the obtained
values of the flow rate. Experimental and calculated data show that with the slug flow
of transporting milk from the milking unit collector to the upper milk line, the slug speed
reaches significant values exceeding 10 m/s, and the acceleration at the border of
sections I and II is 150 m/s2. All this creates prerequisites for intensive hydromechanical
effects on the dispersed composition of fat in milk.
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1. Introduction

As it is known, the sections of communications of milk lines, on which the movement of
fluid is considered, in most cases can be considered as areas with a constant section
along the length (milk hose of the milking machine, technological and transport milk
lines, vacuum tubes, etc.) [1--3].

The applied nature of the tasks allows, in relation to the milk lines, considering the
movement of a fluid as a one-dimensional motion. By the definition, L.I. Sedov's one-
dimensional motions are called ``motions and processes in which only one geometric
coordinate is significant. The word unsteady is added to this name when time t is
significant'' [4]. The communications of milk lines, with the exception of certain types
of technological equipment, as a rule, are cylindrical tubes made of stainless steel,
rubber, and polymeric materials. Estimation of the movement mode of liquids shows
that practically in all links of the milk lines Re >> 2320, which indicates the turbulent
character of the flow. The nature of the tasks of engineering calculation and the turbulent
motion of a fluid provide a basis for analyzing the flow characteristics averaged over
the cross section.
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2. Methods and Equipment

Slug flow is quite typical for milk hoses when milking in stalls into the milk line and for
the milk line washing mode, where the presence of air and water plugs is one of the
main factors determining the washing efficiency [5, 6]. For the analysis, we will accept
the following assumptions: ``slug'' is a continuous body; liquid is incompressible; the
mass of the tube is constant. The adoption of a "continuous model" in the study of the
cork mode of movement of gas-liquid mixtures is, according to V.A. Mamaev et al., the
most common approach [7]. The mass of the milk slug when moving in reality does not
remain constant. Thus, the movement of the milk slug along the milk hose into the milk
line is usually accompanied by some leakage of fluid back down. However, given that
the main goal is to assess the effect of flow velocity parameters on the dispersed fat
composition, then at the first stage such an assumption seems to be justified.

Taking into account the accepted assumptions, we write the equation of motion of
the center of mass of the milk slug relative to the longitudinal axis of the pipe in the
following form

𝛼𝑚
𝑑𝑉
𝑑𝑡 = 𝑃1 − 𝑃2 − 𝑐𝑇 sin 𝛽 − 𝜏𝑠ℎ𝑟𝜒ℓ, (1)

where m -- weight slug;

P1=p1ω and P2=p2ω -- the total pressure on the tube from the bottom and top;

V -- the average velocity slug of section;

C𝑇 =mg -- heft slug;

ω and ℓ -- section and length of slug;

χ -- wetted perimeter;

τ𝑠ℎ𝑠-- shear stress;

β -- pipe angle;

α -- amount of movement, similar in meaning to the Coriolis coefficient;

P1 and P2-- top and bottom pressure of slug.

In equation (1)we replace sin β, τ𝑠ℎ𝑟, χ, taking into account the following values

sin 𝛽 = 𝑧2 − 𝑧1
ℓ ; 𝜏𝑠ℎ𝑟 = 𝜆𝑠ℎ𝑟𝜌

𝑉 2

8 ; 𝜔𝜒 = 𝑅ℎ𝑦𝑑 =
𝑑
4 , (2)

where z1 and z2 -- geometric heights.

Next, (2) substituting in (1) and dividing the resulting expression we will have ωγ

𝑃1 − 𝑃2
𝛾 − 𝑧2 + 𝑧1 = 𝜆ℓ𝑉

2

𝑑2𝑔 + 𝛼ℓ𝑔
𝑑𝑉
𝑑𝑡 . (3)
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Equation (3) can be represented as follows:

𝐶1𝑉 2 + 𝐶2
𝑑𝑉
𝑑𝑡 = 𝐶(𝑡) − 𝑧2 + 𝑧1 (4)

where c1, c2 and c(t) have the same meaning as in the previously considered equation.
Really 𝑐(𝑡) = 𝑃1−𝑃2

𝛾 -- there is a pressure differential providing the movement of the slug
in general case changing in time; 𝑐1 = 𝜆𝐶𝑇 ℓ

𝑑 -- drag coefficient; 𝑐2 𝑑𝑉𝑑𝑡 -- is none other
than the inertial pressure; 𝑐2 = 𝛼ℓ

𝑔 .

In general, the pressure drop varies with time. When c(t) is constant, the integration
of equation (4) gives the expressions for the velocity and acceleration of a moving plug
that are similar to the previous case by the form of the expression

𝑉𝑛 = 𝑁
[
ℓ𝑡/𝑀 − 1
ℓ𝑡/𝑀 + 1]

; (5)

𝑗𝑛 =
2𝑁
𝑀 ⋅ ℓ𝑡/𝑀

(ℓ𝑡/𝑀 + 1)2
, (6)

where 𝑁=√(Δ𝑃−ℓ sin 𝛽ℓ ) 2𝑔𝑑𝜆 ; 𝑀= 𝛼0ℓ𝑑
√2ℓ𝜆𝐶𝑇 𝑑𝑔(Δ𝑃−ℓ sin 𝛽)

; ℓ ⋅ sin 𝛽 = z2 -- z1.

The experiments have shown that under the slug flow movement of milk in the milk
claw, the pressure drop is as follows: in Figure 1. As it can be seen on the graph of
changes in pressure drop, we can distinguish three characteristic sections t1, t2, t3.
In sections t1 and t3, it is conditionally possible to assume a linear dependence of
the pressure drop as a function of time, and in section t2, the pressure drop can be
considered constant. Such an idealized scheme for changing the pressure drop is used
in the analysis of the operation of milking machines [8]. On the basis of the idealized
scheme in the segment t1, can take c(t) = k1 t1; on the segment t2 c(t) = const = cmax; on
the segment t3 c(t) = c𝑜 -- k2 t3.k1 and k2 -- here the slopes of the linear dependencies

When c(t)=k1t equation (4) will take the following form

𝑐1𝑉 2 + 𝑐2
𝑑𝑉
𝑑𝑡 = 𝑘1𝑡 − ℓ𝑛 sin 𝛽 (7)

or by typing the notation

𝑎1 =
𝑐1
𝑐2

= 𝜆ℓ𝑑 ⋅ 𝑔
𝛼 ⋅ ℓ = 𝜆𝑔

𝑑𝛼 ; 𝑎2 =
𝑘1
𝑐2

= 𝑘1𝑔
𝛼 ⋅ ℓ𝑛

;

𝑐0 =
--ℓ𝑛 sin 𝛽 ⋅ 𝑔
𝛼 ⋅ --ℓ𝑛

= 𝑔 sin 𝛽
𝛼 .

The resulting equation can be rewritten in the following form

𝑑𝑉
𝑑𝑡 = 𝑎2𝑡 − 𝑎1𝑉 2 − 𝑐0. (8)
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The solution of the equation will be sought in the form of a power series

𝑉(𝑡) = 𝑉(0) + 𝑉 ′(0)
1! 𝑡 + 𝑉 ″(0)

2! 𝑡2 + 𝑉 ‴(0)
3! 𝑡3... (9)

Under the following initial conditions t=0; V=0; V
′
= -- c0.

Here V
′
= -- c0 means that at the initial moment the acceleration of gravity acts on

the tube. From (8) we find that V''(0) = a2. Then as a first approximation can write

𝑉(𝑡) = −𝑐0𝑡 +
𝑎2
2 𝑡

2. (10)

When analyzing the movement of the milk slug in the second section, it must be
borne in mind that when t𝐼𝐼 = 0, V𝐼𝐼 (0) = V𝐼𝑘. Therefore, solutions of equation (5) with
c (t) = const will have the following form:

𝑉 = 𝑁
[
𝑒

𝑡𝐼𝐼 +𝑡𝑓
𝑚 −1

𝑒
𝑡𝐼𝐼 +𝑡𝑓

𝑚 +1]
; (11)

𝑆 = 2𝑀𝑁 ln(1 + 𝑒
𝑡𝐼𝐼 +𝑡𝑓

𝑚

2 ) − 2𝑀𝑁(𝑡𝐼𝐼 + 𝑡𝑓 ) − 𝑆𝑓 .

where t𝑓 is the time during milk slug, starting with t = 0, V𝐼𝐼 = 0 will pick up speed,
numerically equal to V𝐼𝐼 = V𝐼𝑘, i.e. speed at the border of the first section. S𝑓 -- the path
that will pass the milk slug during t𝑓 at zero initial speed. The value of t𝑓 we find from
the next equation:

𝑡𝑓 = 𝑀 ln [
𝑁 + 𝑉𝐼𝑘
𝑁− 𝑉𝐼𝑘 ]

. (12)

Figure 1: Changing the pressure drop of slug flow.

The initial conditions of the third section of the movement of the milk slug we write
in the following form

𝑡𝐼𝐼𝐼 = 0; 𝑉 𝐼𝐼𝐼 (0) = 𝑉 𝐼𝐼𝑘; 𝑉
′

𝐼𝐼𝐼 (0) = 0; (13)
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where V𝐼𝐼𝑘 -- velocity milk slug in the II section end.

Milk slug of movement equation:

𝑑𝑉
𝑑𝑡 = 𝑃0 − 𝑎2𝑡 − 𝑎1𝑉 2 − 𝑐0. (14)

where 𝑃0 = Δ𝐻
𝑐2 .

From (14) will find V''(0); V''(0) = -- a2 -- 2aVV' = -- a2.

Then taking, as a power series solution (9), taking into account the initial conditions
(13)

𝑉𝐼𝐼 (𝑡) = 𝑉𝐼𝐼𝑘 −
𝑎2
2 𝑡

2; 𝑆𝐼𝐼𝐼 (𝑡) = 𝑉𝐼𝐼𝑘𝑡 −
𝑎2
6 𝑡

3. (15)

When analyzing the slug flow of milk movement, an assumption was made about the
constancy of the mass of the cork. In fact, as already indicated, the movement of the
milk slug, especially on inclined and vertical sections, is accompanied by some leakage
of fluid along the wall in the direction opposite to the motion of the slug. With relatively
large tube lengths, the change in mass of the slug may be significant. To describe the
movement of the milk slug with ``mass loss'', we use the Meshchersky equation [9].

𝑀𝑑𝑉
𝑑𝑡 = 𝑅 + (𝑢1 − 𝑉)𝑑𝑀𝑑𝑡 , (16)

where M -- weight slug;

V -- velocity slug;

R -- resultant of all forces;

u1 -- absolute velocity of the reflected particles.

In accordance with (1) the resultant of forces applied to the slug as it moves up, it will
be equal to

𝑅 = (𝑃1 − 𝑃2)𝜔 −𝑀𝑔 sin 𝛽 −𝑀 𝜆
𝑑 ⋅ 𝑉

2

2 . (17)

Then, taking into account the obtained R value, the Meshchersky equation, with
reference to the milk slug, will take the following form

𝑀𝛼𝑑𝑉𝑑𝑡 = (𝑃1 − 𝑃2)𝜔 −𝑀𝑔 sin 𝛽 −𝑀 𝜆
𝑑 ⋅ 𝑉

2

2 + (𝑢1 − 𝑉)𝑑𝑀𝑑𝑡 . (18)

The general solution of such equations for the case of inverse problems when V(t) is
given, A. Kosmodemyansky results in the following form [10]:

𝑀 = 𝑒 −1
𝑉 ∫(𝑔+ 𝑑𝑉

𝑑𝑡 ) [𝑐 −
𝑘
𝑉1 ∫

𝑉 2 𝑒∫ 1
𝑉1
(𝑔+ 𝑑𝑉

𝑑𝑡 )𝑑𝑡 𝑑𝑡] , (19)

Where c -- integrating constant.
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With the known law of body motion, relation (19) allows determining the law of change
in M(t). To solve the direct problem, it is necessary to do the opposite, specifying M(t) to
determine V(t). The loss of mass of the slug depends on the slick thickness remaining
on the inner wall of the communications. Therefore, knowing the slick thickness or the
law of change, in principle, it is possible to determine the magnitude of the loss of the
mass of the slug. In [11], the problem of a liquid slick formed on the surface of a body
extracted from a liquid was considered. It is established that in the general case the
slick thickness is proportional√𝑀𝑉

𝜌𝑔 , where V is the speed of the slug. In this case, the
formula for determining ΔM takes on a very complex form.

Δ𝑀 = 𝜋𝑑ℎ(𝑉)𝑆 = 𝜋𝑑ℎ(𝑉)∫𝑉(𝑡)𝑑𝑡, (20)

where h(V) -- slick thickness dependence on the speed;

𝑆 = ∫𝑉(𝑡)𝑑𝑡 -- the length traveled by the slug, which in itself, depends on the desired
function V(t).

Therefore, it is advisable here to use one of the approximate numerical methods, for
example, the piecewise approximation method, with assumptions made at the sites that
the loss of mass is proportional only to the distance traveled. Note, as it will be shown
below, that such an assumption turned out to be quite convenient even in practical use
for determining the mass loss of a slug of washing liquid during washing. Knowing the
length of the milk pipeline and the specific "loss" of mass per unit length, it is easy to
calculate the original length [12, 13]. The thickness of the slick at the beginning and end
of the process can be calculated from the data of the work.

To test equation (7) describing the slug flow, it was necessary to use another method
-- high-speed filming, since the method used gives large errors due to the relatively
small volumes of the liquid slug itself and the presence of the opposite milk flow along
the wall [14, 15]. The scheme of the experimental setup for the study of the slug flow is
shown in Figure 2. At the lower end of the dairy communication, an adjustable air intake
throttle 2 is installed. The opening of the throttle is a valve with an electromagnetic drive.

The change in the intensity of milk intake is carried out by the crane 1. The area of
the dairy line was imitated by a transparent glass tube d≈15 mm, at the ends of which
a driving differential was created due to vacuum. The movement of the milk slug inside
the glass tube was fixed on the film by a high-speed camera. The frame rate is 2500
fps.

In parallel, the pressure in the initial and final points of themilk line was recorded using
a strain gauge 6, an amplifier and a recorder 10. According to the obtained film material,
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the dependence S = f (t) was determined, and further, by graphical differentiation, the
dependences V = f (t) and j = f (t).

Figure 2: Scheme of the experimental setup for the study of milk slug flow: 1 -- crane; 2 -- adjustable air
intake throttle; 3 -- high-speed video camera; 4 -- air distributor with needles; 5 -- gas meter; 6 -- strain
gauge; 7, 8, 9 -- respectively the breaker, electric stopwatch and pulse counter; 10 -- tensoamplifier.

3. Results

Figure 3 presents the experimental and calculated dependences V = f (t) and S = f (t) for
the slug flow with a variable pressure drop characteristic of a number of nodes of milk
lines. The change in pressure drop wore a trapezoidal character with three sections
of duration of 0.12 s, 0.08 s, and 0.12 s. The ratio between the plots was changed by
adjustable chokes and the magnitude of the vacuum. The length of the milk tube was
changed by changing the intensity of milk intake. In Figure 3, ℓ = 0.25 m, ΔP = 3.8 m,
sinβ = 0.72, d = 1.4 ⋅ 10−2 m, k = 31.5, a2 = 1.24 ⋅ 10−3, α0 = 1 are shown. It can be seen from
the graphs that the theoretical dependences in general have good agreement with the
experimental ones and correctly reflect the process of moving the milk slug.

The experimental and calculated data show that with the slug flow of transporting
milk from the milking unit collector to the upper milk line, the ``slug'' speed reaches
significant values exceeding 10 m / s, and the acceleration at the border of sections I
and II is 150 m/s2. All this creates prerequisites for intensive hydromechanical effects
on the dispersed composition of fat in milk.
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Figure 3: Dependencies S (t) and V (t) in the slug flow of milk pipeline: dashed line --theoretical;solid line
--experimental.

а) b)  bbbbbbbbbbbb

Figure 4: Liquid slug movement: a-after part; b-front part.

4. Discussion

The calculated values of S = f (t) differ from the experimental data by an average of
15%, which, if we take the errors arising from the processing of film materials, can be
considered quite acceptable. These discrepancies, of course, were influenced by such
facts as the intensive saturation of the stern and fore part of the slug with air, which is
clearly seen in the photograph (Fig. 4) and the decrease in the mass of the slug during
movement due to the reverse flow of fluid near the pipe wall due to border effects. In
addition it is necessary to take into account that the relatively large error, which gives
the method of graphical differentiation, is used to build experimental dependencies V

= f (t) and j = f (t).

5. Conclusion

The evaluation of the destabilization of milk fat only from hydromechanical vortex factors
(without taking into account the effects of air) showed that, with the obtained values
of the flow velocity, it is 6-10%. In addition, large values of velocity gradients create
conditions for intensification under the action of inertial forces of mutual displacements
and collisions of fat particles and, as a consequence, the formation of oil conglomerates.
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