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Abstract.
When the response variable is discrete as a number (count) and there is a violation
of the assumption of equidispersion, namely overdispersion or underdispersion then
one of the appropriate alternative models used is Negative Binomial Regression (NBR).
Moreover, if there are two correlated response variables and have an equidispersion
violation, the Bivariate Negative Binomial Regression (BNBR) model is the solution.
However, the BNBR model is considered inappropriate if the data contains spatial
and temporal heterogeneity derived from panel data with the unit of observation in
the form of a region. Therefore, a model is offered which is known as Geographically
and Temporally Weighted Bivariate Negative Binomial Regression (GTWBNBR) which
accommodates spatial and temporal effects. This study aims to conduct parameter
estimates and test statistics for the GTWBNBR model. Estimated parameters use
Maximum Likelihood Estimation (MLE) with BHHH numerical iteration because the MLE
estimates are not closed-form. When the sample size is large, the Maximum Likelihood
Ratio Test (MLRT) is used for simultaneous parameter testing while the test statistic
for partial parameter testing approaches the Chi-Square distribution so that it can be
tested using the Z-Test.
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1. INTRODUCTION

The proper regression model for the variable response as count number is the Poisson
regression model [1]. Poisson regression modeling has assumptions that must be ful-
filled, in which the response variable’s mean is the same as the variance (equidispersion)
[2]. If there is a violation in assumption then the probability that occurs is that the average
value is smaller than variance (overdispersion) or bigger than variance (underdispersion)
[3]. The effect of the violation provides underestimation of standard error and the
conclusions about the significance test become inappropriate [4]. Frequently, violation
of equidispersion is overdispersion, then one of the analysis methods to conquer
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it is Negative Binomial Regression [2, 5–8]. A global model will be obtained with
Negative Binomial Regression analysis, which is the model that applies to all regions in
which the data is retrieved. There are differences in geography between regions which
illustrate the effects of spatial heterogeneity between regions. The method of analysis
that accommodates the presence of spatial heterogeneity is known as Geographically
Weighted Regression (GWR) [9].

The parameter estimation in GWR method using Weighted Least Squares (WLS) and
optimum bandwidth selection with cross validation (CV) function [9, 10]. The gaussian
adaptive kernel functions and the best models using Akaike’s Information Criterion
(AIC) and corrected AIC (AICc) functions have been used [10]. Research with spatial
approaches to discrete data that is overdispersed has been widely done. Mostly the
estimation method used is MLE with Newton Raphson iteration (NR) and parameter
testing with MLRT method [11–13]. Alternatives to the NR iteration are the Nelder Mead
iteration [14] and the Berndt-Hall-Hall-Hausman iteration (BHHH) [15].

Recently, many problems require spatial analysis involving time-period or temporal
effects. The GWR spatial analysis method which is accommodating temporal effects
known as Geographically and Temporally Weighted Regression (GTWR) method [15, 16].
GTWR modeling involves the observation in the previous period to do modeling in a
period, thus affecting the effectiveness and effectiveness compared to the GWR model.
This study will use spatial temporal analysis methods for discrete response variables
that are overdispersed using GTWBNBR analysis.

2. RESEARCH METHOD

2.1. Bivariate Negative Binomial Regression (BNBR)

When a pair of random discrete count variables 𝑌1 and 𝑌2 has correlation and overdisper-
sion with dispersion paramater 𝜏 , then BNBR is considered. BNBR distribution defined
as in the following equation [17].

(1)

where ; 𝑦1𝑖 = 0, 1, 2,… ; 𝑦2𝑖 = 0, 1, 2,… ; 𝑖 = 1, 2,… , 𝑛 with
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The BNBR model for the i-th observation of n samples is

(2)

MLEmethod is used to estimate the parameter combined with BHHH numerical iteration
while parameter testing uses MLRT.

2.2. Geographically and Temporally Weighted Bivariate Negative
Binomial Regression (GTWBNBR)

The GTWBNBR model is an advanced BNBR model which accommodates spatial tem-
poral effects. Refers to equation (1), then the join pmf of 𝑌1𝑖𝑙 and 𝑌2𝑖𝑙 of GTWBNBR as
follows:

(3)

, where

then the model is and

l-index is the period of the total period of L while 𝑖-index is the i-th observed from
𝑛 random sample, so the total observation is 𝑛 × 𝐿. 𝑥𝑖𝑙 it is a vector-sized(𝑝 + 1) × 1 at

every i-th location and at every l-th period. Furthermore is the i-th observed
coordinates spatial temporal, while is the location of the latitude, is the location
of the longitude coordinate points of the i-th observation and is period of the i-th
observation. and is a parameter vector of the regression coefficient with
a temporal spatial effect sized (𝑝 + 1) × 1.

2.3. Spatial Temporal Weighting

Basically, location and period in GTWR modeling are measured in different units. Let
spatial distance is 𝑑𝑆 and temporal distance is 𝑑𝑇 . Then the spatial-temporal distance
is [18]

(4)

In balancing the spatial-temporal effect, a scale factor is required which notated with
𝛾 and , thus equation (4) become
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(5)

let , then spatial-temporal distance is .The
value of assumed 1 for ease calculation in . used to increase or decrease temporal
distances to match spatial distances. The value of can be optimized by using the
smallest AIC value. Thus, the spatial- temporal euclidean distance can be written18

(6)

When building a weighting matrix, a kernel function must be determined. There are
two types of the kernel, adaptive and fixed. Through this adaptive approach allows
every observation to have a different bandwidth [19]. The adaptive bi-square kernel
functions are shown as follows:

(7)

where is spasial-temporal distance and is bandwidth. The accuracy of parameter
estimation depends on the bandwidth selection, the more optimum the more accurate
[19]. Methods to determine optimal bandwidth are (Cross Validation) and GCV (Gener-
alized Cross Validation) [20]. GCV is preferred because it is quite easy to work with and
provides better precision in parameter estimation [19, 20]. The GCV method is defined
as follows:

(8)

states the number of parameters in the model. The minimum CGV, the more
optimum bandwidth.

DOI 10.18502/kls.v8i1.15547 Page 189



ICMScE

2.4. Estimating Parameter and Hypothesis Testing

The data that is used in GTWBNBR modeling is panel data. The parameters testing
in GTWBNBR is applied gradually in every period which the previous period incorpo-
rate into the next period. For every location and period, the parameter 𝛽1𝐿 and 𝛽2𝐿is
estimated, so every parameter is given an index indicating the location and period,
while period index is only given to the overdispersion paramete 𝜏 which means that
parameters only estimated for every period. MLE method with BHHH iterations applied
in estimating parameters as well as adaptive bi-square kernel functions. The stages in
the estimation using MLE are:

1. Define the ln-likelihood function of the GTWBNBR model

2. Multiply (i) by spatial-temporal weight (𝑄∗
𝑙 )

3. Derivating (ii) against every parameter then equaled to zero to maximize function

4. When the result of stage (iii) is not closed-form, then an iteration is considered.
The iteration used in this study is

The BHHH iteration because it has the advantage of only requiring the first derivative
to build the Hessian matrix.

Furthermore, the stages in obtaining test statistics on GTWBNBR are as follows:

1. Define a hypothesis to test the GTWBNBR model

2. Specify the set of parameters under 𝐻0 (𝜔𝑙) and the set of parameters underpop-
ulation for every period (�𝑙)

3. Define ln-likelihood function stage (b) and multiply it by spatial-temporal weight
(𝑄∗

𝜔𝑙)

4. Maximizing stage (c) by derivating against every parameter then equaled to zero.
When the result of the derivation is not closed form, then BHHH iteration is
considered

Determining odds ratio to get statistic test, the distribution and critical rejection area.

3. RESULTS AND DISCUSSION
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3.1. Parameter Estimation of GTWBNBR

The first stage in estimating parameters is defining ln-likelihood function that refers to
equation (3) with the following equation form as follows:

(9)

with 𝑥𝑖𝑙 = [1𝑥1𝑖𝑙𝑥2𝑖𝑙⋯𝑥𝑝𝑖𝑙]𝑇

Estimated parameters for every location 𝑖∗ at any period that has been given temporal

spatial weight namely with the following equation form as follows:

(10)

Furthermore, to get the estimated parameters of the GWTBNBR model at every
observation point (𝑖∗-th location) in every l-period, then the equation (10) derived against
every of its parameters and equated to zero (detailed drop attached).

The first derivation of against

(11)

The first derivation of against

(12)

The first derivation of against 𝜏𝑙
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(13)

The first derivation of against every parameter when equated to zero, it is not
closed-form, then BHHH iteration is considered. The stages of the BHHH algorithm for
the GTWBNBR model are provided earlier.

3.2. Hypothesis Testing of GTWBNBR

Parameter testing is applied gradually in every period. Parameter testing consists of
partial and simultaneous testing. The hypothesis-testing parameters simultaneously as
follows:

𝐻0 ∶ 𝛽𝑐1𝐿(𝑠𝑖) = 𝛽𝑐2𝐿(𝑠𝑖) = ⋯ = 𝛽𝑐𝑝𝐿(𝑠𝑖) = 0; 𝑐 = 1, 2; 𝑖 = 1, 2,… , 𝑛

𝐻1 ∶ There is at least one 𝛽𝑐𝑗𝐿(𝑠𝑖) ≠ 0; 𝑐 = 1, 2; 𝑗 = 1, 2,… , 𝑝
where p represents the number of predictor variables.

Testing parameters simultaneously in GTWBNBR model using the MLRT method. The
first stage is determining the set of parameters under𝐻0(𝜔𝐿) and the set of parameters
underpopulation (�𝐿), as follow:

Set of parameters under 𝐻0 (𝜔𝐿):

𝜔𝐿 = {𝛽𝜔10𝐿(𝑠𝑖), 𝛽𝜔20𝐿(𝑠𝑖)𝜏𝜔𝐿; 𝑖 = 1, 2,… , 𝑛}(14)

Set of parameters underpopulation:

�𝐿 = {𝛽1𝐿(𝑠𝑖), 𝛽2𝐿(𝑠𝑖), 𝜏𝐿; 𝑖 = 1, 2,… , 𝑛}(15)

The likelihood function underpopulation (𝐿(�𝐿)) refers to the equation (9), while the
ln-likelihood function under 𝐻0 𝑙𝑛(𝐿(𝜔𝐿)) as follows :

(16)
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Furthermore, determine the function 𝑄∗
𝜔𝐿 i.e. ln likelihood under 𝐻0 in equation (16)

multiplied by temporal spatial weighting 𝑤𝑖𝑖∗𝑙to obtain parameter estimators under 𝐻0

(17)

Then look for the first derivative 𝑄∗
𝜔𝐿 against every parameter under the𝐻0 and then

equated with zero and obtained the following result:

The first derivation of 𝑄∗
𝜔𝐿 against 𝛽𝜔10𝐿(𝑠𝑖∗) is

(18)

The first derivation of 𝑄∗
𝜔𝐿 against 𝛽𝜔20𝐿(𝑠𝑖∗) is

(19)

The first derivation of 𝑄∗
𝜔𝐿 against 𝜏𝜔𝐿 is

(20)

The equation obtained from the first derivative in (19) to (21) is not closed-form, then
be solved using the BHHH iteration. Thus obtained the estimated parameters under𝐻0

as follows:

b𝜃𝜔𝑖𝐿(𝑠𝑖∗) = [ b𝛽𝑇𝜔10𝐿(𝑠𝑖∗) b𝛽𝑇𝜔20𝐿(𝑢𝑖∗ , 𝑣𝑖∗ , 𝑡𝑖∗) b𝜏𝜔𝐿]
𝑇 (21)

where 𝑖 = 1, 2,… , 𝑛 and 𝐿 = 1, 2,… ,𝐿∗

The results of the estimating parameters underpopulation and 𝐻0 with MLE will
maximize the likelihood function in every L-th period, as follows :
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(22)

(23)

Based on the equation (22) and (23) further determined odds ratio as follows:

�𝐿 = 𝐿( b𝜔𝐿)
𝐿(b�𝐿)

< �0(24)

Reject 𝐻0 if �𝐿 < �𝐿0, where 0 ≤ �𝐿0 ≤ 1 with 𝛼 = 𝑃 (�𝐿 < �𝐿0𝐻𝑜𝑡𝑟𝑢𝑒). �𝐿0 It is a
constant that depends on 𝛼. Furthermore equation (24) can be written as follows:

𝐺2
𝐿 = −𝑙𝑛�2𝐿 = −𝑙𝑛𝑙𝑛(𝐿( b𝜔𝐿)

𝐿(b�𝐿)
)
2
= 2(𝑙𝑛𝑙𝑛𝐿(b�𝐿) − 𝑙𝑛𝑙𝑛𝐿( b𝜔𝐿))∼𝑛𝐿→∞𝜒2

(𝛼;𝑎−𝑏)(25)

𝐺2
𝐿is approach with 𝜒2 distribution with dof a-b, where a is the total of parameters

under population and b is the total parameters under 𝐻0. Reject 𝐻0 if 𝐺2
𝐿 > 𝜒2

(𝛼;𝑎−𝑏). If
the results of the test simultaneously reject 𝐻0, then proceed with a partial test to find
out whether there is an influence of predictor variables on responses individually and
how big the effect is. The hypothesis in the testing parameter partially as follows:

𝐻0 ∶ 𝛽𝑐𝑗𝐿(𝑠𝑖) = 0

𝐻1 ∶ 𝛽𝑐𝑗𝐿(𝑠𝑖) ≠ 0(26)

This test is done for 𝑐 = 1, 2; 𝑗 = 1, 2,… , 𝑝; 𝑖 = 1, 2,… , 𝑛. So that the test statistics
used:

(27)
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where 𝑠𝑒( b𝛽𝑐𝑗𝐿(𝑠𝑖)) = √𝑣 ̂𝑎𝑟( b𝛽𝑐𝑗𝐿(𝑠𝑖)) and 𝑣 ̂𝑎𝑟( b𝛽𝑐𝑗𝐿(𝑠𝑖)) obtained from diagonal element
of varian kovarian matrix 𝑣 ̂𝑎𝑟( b𝜃𝑖𝐿) = −𝐻−1( b𝜃𝑖𝐿). In big size sample, statistik Z will
approach normal standard distribution, with rejection area 𝐻0 is 𝑍 > 𝑍 𝛼

2
.

4. CONCLUSION

Estimating the parameters of the GTWBNBR model using the MLE method does not
produce a closed form so that it requires numerical iteration optimization. BHHH as a
numerical iteration is applied to every period. Parameter testing consists of simultaneous
and partial testing which is applied to every period using the MLRT method. When the
sample is large, the test statistic on the simultaneous parameter test is approximated
by the Chi-Square distribution, while the partial parameter test is approximated by the
Normal Standard distribution.
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