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Abstract.
Bauer et al. describe Goursat’s theorem, representing the characteristics of subgroups
of a direct product of two or more groups. In this paper, we expand into a ring structure
that describes the characteristics of subrings of a direct product of rings. This research
method is to analogize the evidence by Bauer et al. in the group for generalization.
In our main results, every subring of the direct product of rings is determined by ring
epimorphism between the ring and factor ring.
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1. INTRODUCTION

Edouard Goursat [1], a French mathematician, discovered Goursat’s Theorem, which
describes the characteristics of subgroups of the direct product of two groups, i.e.,
an isomorphism between factor groups of subgroups of the given groups determines
each subgroup of the direct product of two groups. Give an instance of applying the
Goursat’s Theorem to determine the subgroups of 𝐺1 × 𝐺2, to be counted the number
of subgroups of 𝑆3 × 𝑆3, and to prove the Lemma Zassenhaus [2]. They also describe
how can state Goursat’s Theorem in the context of rings, ideals, subrings and modules.
Goursat’s Theorem to give explicit formulas for a total number of subgroups of 𝑍𝑚 ×𝑍𝑛

and a total number of subrings of 𝑍𝑚 × 𝑍𝑛 [3, 4]. This theorem is further applied to
provide an exact formula for the total number of subgroups of a finite abelian p-group
𝑍𝑝𝑚 × 𝑍𝑝𝑛 × 𝑍𝑝𝑙 [5]. Then extends Goursat’s Theorem to R-module [6], whereas expand
to R-algebraic [7].

Other researchers have extensively used Goursat’s Theorem to advance algebra [3–
5, 8–15]. Therefore, this theorem is important to be studied in more depth; for example,
Bauer et al. [12] generalize to a direct product of groups by designing an asymmetric
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version of Goursat’s Theorem for the two groups and then applying recursively. Then
extends to a direct product of modules [16]. However, to the best of our knowledge, there
has been no research on expanding the Goursat Theorem to the direct product of n
rings. This theorem is critical for following researchers to examine and use, particularly
in ring structures. Therefore, this study aimed to investigate the Goursat Theorem’s
extension to the direct product of n rings.

2. RESEARCH METHOD

This research analogizes the findings obtained in the group to generalize to rings by
devising an asymmetric version of Goursat’s Theorem for two rings that then apply
recursively [12].

3. RESULT AND DISCUSSION

Let 𝐴1 and 𝐴2 be rings with zero elements 0𝐴𝑖
respectively, 𝐼1 is an ideal of 𝐴1 , and 𝐼2

is an ideal of 𝐴2. The graph of ring homomorphism 𝑓 ∶ 𝐴1 → 𝐴2, denoted by 𝐺𝑓 , is the
set {(𝑎1, 𝑎2) ∈ 𝐴1 × 𝐴2𝑓(𝑎1) = 𝑎2}. It is clear immediate that 𝐺𝑓 is a subring of 𝐴1 × 𝐴2.
Associated to 𝐴1 × 𝐴2 there are some natural homomorphisms: π1 ∶ 𝐴1 × 𝐴2 → 𝐴1,
π2 ∶ 𝐴1 × 𝐴2 → 𝐴2, ι1 ∶ 𝐴1 → 𝐴1 × 𝐴2, ι2 ∶ 𝐴2 → 𝐴1 × 𝐴2, ρ ∶ 𝐴1 × 𝐴2 → 𝐴1 ×

𝐴2
𝐼2
, and

ρ0 ∶ 𝐴1 × 𝐴2

→ 𝐴1
𝐼1
× 𝐴2

𝐼2
. Here, we write 𝐴1≅𝑓𝐴2 to denote that 𝐴1 and 𝐴2 are isomorphic via a ring

isomorphism 𝑓 .
Theorem 1. Let 𝐴1 and 𝐴2 be rings, 𝑅 is a subring of 𝐴1 × 𝐴2. Then

π1(𝑅)
ι1−1(𝑅)

≅𝑓 π2(𝑅)
ι2−1(𝑅)

and ρ0−1(𝐺𝑓 ) = 𝑅.
Proof. Define a map 𝑓 ∶ π1(𝑅)

ι1−1(𝑅)
→ π2(𝑅)

ι2−1(𝑅)
by𝑓(𝑎1 + ι1−1(𝑅)) ∶= 𝑎2 + ι2−1(𝑅) when

(𝑎1, 𝑎2) ∈ 𝑅. Suppose that 𝑎1+ι1−1(𝑅),𝑏1+ι1−1(𝑅)∈π1(𝑅)
ι1−1(𝑅)

with 𝑎1 + ι1−1(𝑅) = 𝑏1 + ι1−1(𝑅). Then
𝑎1 − 𝑏1 ∈ ι1−1(𝑅). Since 𝑎1 ∈ π1(𝑅) and 𝑏1 ∈ π1(𝑅), (𝑎1, 𝑥), (𝑏1, 𝑦) ∈ 𝑅 for some 𝑥, 𝑦 ∈ 𝐴2,
whence 𝑓(𝑎1+ ι1−1(𝑅)) = 𝑥+ ι2−1(𝑅) and 𝑓(𝑏1+ ι1−1(𝑅)) = 𝑦+ ι2−1(𝑅). Thus (0𝐴1

, 𝑥−𝑦) =
(𝑎1, 𝑥)−(𝑏1, 𝑦)−(𝑎1−𝑏1, 0𝐴2

) ∈ 𝑅 since𝑅 is a subring of𝐴1×𝐴2. Therefore, 𝑥−𝑦 ∈ ι2−1(𝑅)
and hence 𝑥 + ι2−1(𝑅) = 𝑦 + ι2−1(𝑅). Verify that 𝑓 is a ring epimorphism. Finally, let
𝑝1 + ι1−1(𝑅), 𝑞1 + ι1−1(𝑅) ∈

π1(𝑅)
ι1−1(𝑅)

with 𝑓(𝑝1 + ι1−1(𝑅)) = 𝑓(𝑞1 + ι1−1(𝑅)). Since 𝑝1 ∈ π1(𝑅)
and 𝑞1 ∈ π1(𝑅) (𝑝1, 𝑝2), (𝑞1, 𝑞2) ∈ 𝑅 for some 𝑝2, 𝑞2 ∈ 𝐴2, so that 𝑝2+ ι2−1(𝑅) = 𝑞2+ ι2−1(𝑅).
Consequently, (𝑝1 − 𝑞1, 0𝐴2

) = (𝑝1, 𝑝2) − (𝑞1, 𝑞2) − (0𝐴1
, 𝑝2 − 𝑞2) ∈ 𝑅 since 𝑅 is a subring of

𝐴1 × 𝐴2.
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Suppose that (𝑎1, 𝑎2) ∈ ρ0−1(𝐺𝑓 ). Then (𝑎1 + ι1−1(𝑅), 𝑎2 + ι2−1(𝑅)) = ρ0(𝑎1, 𝑎2) ∈ 𝐺𝑓 ,
so that 𝑓(𝑎1 + ι1−1(𝑅)) = 𝑎2 + ι2−1(𝑅). Thus (𝑎1, 𝑎2) ∈ 𝑅. Let (𝑏1, 𝑏2) ∈ 𝑅. Then 𝑏1 ∈ π1(𝑅)
and 𝑏2 ∈ π2(𝑅). Therefore, ρ0(𝑏1, 𝑏2) = (𝑏1 + ι1−1(𝑅), 𝑏2 + ι2−1(𝑅)) ∈ 𝐺𝑓 . Thus (𝑏1, 𝑏2) ∈
ρ0−1(𝐺𝑓 ).

Theorem 2. Let 𝐴1 and 𝐴2 be rings, 𝐼𝑖 is an ideal of 𝐴𝑖. If
𝐴1
𝐼1
≅𝑓 𝐴2

𝐼2
then (i)π1

(ρ0−1(𝐺𝑓 )) = 𝐴1, (ii) π2(ρ0−1(𝐺𝑓 )) = 𝐴2, (iii) ι1−1(ρ0−1(𝐺𝑓 )) = 𝐼1, and (iv) ι2−1(ρ0−1(𝐺𝑓 )) =
𝐼2.

Proof. (i) Clearly π1(ρ0−1(𝐺𝑓 )) ⊆ 𝐴1. Suppose that 𝑎1 ∈ 𝐴1. There exists an element
𝑎2 ∈ 𝐴2 such that (𝑎1 + 𝐼1) = 𝑎2 + 𝐼2. Hence ρ0(𝑎1, 𝑎2) = (𝑎1 + 𝐼1, 𝑎2 + 𝐼2) ∈ 𝐺𝑓 ,
whence (𝑎1, 𝑎2) ∈ ρ0−1(𝐺𝑓 ) and we get 𝑎1 ∈ π1(ρ0−1(𝐺𝑓 )). (ii) Suppose that 𝑎2 ∈ 𝐴2.
There exists an element 𝑎1 ∈ 𝐴1 such that 𝑓(𝑎1 + 𝐼1) = 𝑎2 + 𝐼2 since 𝑓 is surjective.
Thus 𝑎2 ∈ π2(ρ0−1(𝐺𝑓 )). (iii) Suppose 𝑎1 ∈ ι1−1(ρ0−1(𝐺𝑓 )). Then ρ0(𝑎1, 0𝐴2

) ∈ 𝐺𝑓 and
hence 𝑓(𝑎1 + 𝐼1) = 𝐼2 = 𝑓(𝐼1). Since 𝑓 is injective, 𝑎1 + 𝐼1 = 𝐼1. Therefore, 𝑎1 ∈ 𝐼1.
Conversely, if 𝑏1 ∈ 𝐼1, then 𝑏1 + 𝐼1 = 𝐼1. Thus (𝑏1 + 𝐼1) = 𝑓(𝐼1) = 𝐼2. Consequently,
ρ0(𝑏1, 0𝐴2

) = (𝑏1 + 𝐼1, 𝐼2) ∈ 𝐺𝑓 . Therefore, 𝑏1 ∈ ι1−1(ρ0−1(𝐺𝑓 )). (iv) is proved similarly. �

Definition 3. Let 𝐴1, 𝐴2,… ,𝐴𝑛 be a finite collection of rings and let 𝑅 be a nonempty
subset of 𝐴1 × 𝐴2 ×⋯ × 𝐴𝑛. If 𝑆 ⊂ ̂𝑛 ∶= {1, 2,… , 𝑛} and 𝑗 ∈ ̂𝑛 − 𝑆 , let

𝑅(𝑗𝑆) ∶= {𝑎𝑗 ∈ 𝐴𝑗(𝑎1, 𝑎2,… , 𝑎𝑛) ∈ 𝑅 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎𝑖 ∈ 𝐴𝑖, 𝑖 ∈ ̂𝑛−{𝑗} 𝑤𝑖𝑡ℎ 𝑎𝑖 = 0𝐴𝑖
𝑖𝑓 𝑖 ∈ 𝑆}

For example, 𝑅(2 ̂𝑛 − {2}) ∶= {𝑎2 ∈ 𝐴2(0𝐴1
, 𝑎2, 0𝐴3

, 0𝐴4
,… , 0𝐴𝑛

) ∈ 𝑅} and 𝑅(1{4, 5,… ,
𝑛}) ∶= {𝑎1 ∈ 𝐴1(𝑎1, 𝑎2, 𝑎3,
0𝐴4

, 0𝐴5
,… , 0𝐴𝑛

) ∈ 𝑅 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎2 ∈ 𝐴2, 𝑎3 ∈ 𝐴3}. Let 𝑅 be a subring of 𝐴1 × 𝐴2.
By Theorem 1, 𝑅(1∅)

𝑅(1{2})≅
𝑓 𝑅(2∅)

𝑅(2{1}) since π1(𝑅) = 𝑅(1∅), π2(𝑅) = 𝑅(2∅), ι1−1(𝑅) = 𝑅(1{2}),
and ι2−1(𝑅) = 𝑅(2{1}). Let 𝐴1, 𝐴2,… ,𝐴𝑛 be a finite collection of rings, and let π𝑖 ∶
𝐴1 ×𝐴2 ×⋯×𝐴𝑛 → 𝐴𝑖 be given by π𝑖(𝑎1, 𝑎2,… , 𝑎𝑛) = 𝑎𝑖, 𝑖 ∈ ̂𝑛, π𝑖 is called the standard
projection onto the 𝑖th factor. Of course π𝑖(𝑅) = 𝑅(𝑖∅) for all subring ⊆ 𝐴1×𝐴2× ⋯×𝐴𝑛.
Now we define ∏𝑖 ∶ 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 → 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑖 by ∏𝑖(𝑎1, 𝑎2,… , 𝑎𝑛) =
(𝑎1, 𝑎2,… , 𝑎𝑖), 𝑖 ∈ ̂𝑛, ∏𝑖 is called the standard projection onto the first 𝑖 factors (e.g.,

∏1 = π1 and ∏𝑛 = 𝑖𝑑𝐴1×𝐴2×⋯×𝐴𝑛
).

Theorem 4. Let 𝐴1, 𝐴2,… ,𝐴𝑛 be a finite collection of rings and 𝑗 ∈ ̂𝑛 − 𝑆 . If 𝑅 is a

subring of 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 then 𝑅(𝑗𝑆) is a subring of 𝐴𝑗 and 𝑅(𝑗𝑆) is an ideal of

𝑅(𝑗𝑇 ) with 𝑇 ⊆ 𝑆 .
Proof. Let 𝑎, 𝑏 ∈ 𝑅(𝑗𝑆). Then 𝑎 = 𝑎𝑗 and 𝑏 = 𝑏𝑗 such that (𝑎1, 𝑎2,… , 𝑎𝑗 ,… , 𝑎𝑛),

(𝑏1, 𝑏2,… , 𝑏𝑗 ,… , 𝑏𝑛) ∈ 𝑅 where 𝑎𝑖 = 𝑏𝑖 = 0𝐴𝑖
(𝑖 ∈ 𝑆) and for some 𝑎𝑖, 𝑏𝑖 ∈ 𝐴𝑖 (𝑖 ∈

̂𝑛 − 𝑆 ∪ {𝑗}). Since 𝑅 is a subring of 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛, (𝑎1 − 𝑏1, 𝑎2 − 𝑏2,… , 𝑎𝑛 −
𝑏𝑛), (𝑎1𝑏1, 𝑎2𝑏2,… , 𝑎𝑛𝑏𝑛) ∈ 𝑅. We have 𝑎 − 𝑏 = 𝑎𝑗 − 𝑏𝑗 ∈ 𝑅(𝑗𝑆) and 𝑎𝑏 = 𝑎𝑗𝑏𝑗 ∈ 𝑅(𝑗𝑆),
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because 𝑎𝑖 − 𝑏𝑖 = 𝑎𝑖𝑏𝑖 = 0𝐴𝑖
(𝑖 ∈ 𝑆) and there exists 𝑎𝑖 − 𝑏𝑖, 𝑎𝑖𝑏𝑖 ∈ 𝐴𝑖 (𝑖 ∈ ̂𝑛 − 𝑆 ∪ {𝑗}).

Therefore, 𝑅(𝑗𝑆) is a subring of 𝐴𝑗 . Note that 𝑅(𝑗𝑆) is a subring of 𝑅(𝑗𝑇 ) since
both 𝑅(𝑗𝑆) and 𝑅(𝑗𝑇 ) are subring of 𝐴𝑗 and (𝑗𝑆) ⊆ 𝑅(𝑗𝑇 ). Suppose 𝑢 ∈ 𝑅(𝑗𝑆)
and 𝑟 ∈ 𝑅(𝑗𝑇 ). Then 𝑢 = 𝑢𝑗 and 𝑟 = 𝑟𝑗 such that (𝑢1, 𝑢2,… , 𝑢𝑗 ,… , 𝑢𝑛), (𝑟1, 𝑟2,… , 𝑟𝑗 ,
,… , 𝑟𝑛) ∈ 𝑅 where component 𝑢𝑖 = 0𝐴𝑖

(𝑖 ∈ 𝑆) and 𝑟𝑖 = 0𝐴𝑖
(𝑖 ∈ 𝑇 ); for some

𝑢𝑖 ∈ 𝐴𝑖 (𝑖 ∈ ̂𝑛 − 𝑆 ∪ {𝑗}) and 𝑟𝑖 ∈ 𝐴𝑖 (𝑖 ∈ ̂𝑛 − 𝑇 ∪ {𝑗}). Since 𝑅 is a subring of
𝐴1 ×𝐴2 ×⋯×𝐴𝑛, (𝑢1𝑟1, 𝑢2𝑟2,… , 𝑢𝑗𝑟𝑗 ,… , 𝑢𝑛𝑟𝑛) ∈ 𝑅. Furthermore, 𝑢𝑟 = 𝑢𝑗𝑟𝑗 ∈ 𝑅(𝑗𝑆) since
𝑢𝑖𝑟𝑖 = 0𝐴𝑖

𝑟𝑖 = 0𝐴𝑖
(𝑖 ∈ 𝑆) and there exists 𝑢𝑖𝑟𝑖 ∈ 𝐴𝑖 (𝑖 ∈ ̂𝑛−𝑆 ∪{𝑗}). Thus 𝑅(𝑗𝑆) is a right

ideal of 𝑅(𝑗𝑇 ). The proof for 𝑅(𝑗𝑆) is a left ideal of 𝑅(𝑗𝑇 ) is similar. �

Theorem 5. Let 𝐴1, 𝐴2,… ,𝐴𝑛 be a finite collection of rings. If 𝑅 is a subring of

𝐴1 × 𝐴2 ×⋯ × 𝐴𝑛 then 𝑓𝑘 ∶ ∏𝑘(𝑅) →
𝑅(𝑘+1∅)
𝑅(𝑘+1�̂�) (1 ≤ 𝑘 < 𝑛) is a ring epimorphism.

Proof. Define a map 𝑓𝑘 ∶ ∏𝑘(𝑅) → 𝑅(𝑘+1∅)
𝑅(𝑘+1�̂�) by 𝑓𝑘(𝑎1, 𝑎2,… , 𝑎𝑘) ∶= 𝑎𝑘+1 + 𝑅(𝑘 +

1�̂�) when (𝑎1, 𝑎2, 𝑎𝑘, 𝑎𝑘+1,… , 𝑎𝑛) ∈ 𝑅 for some 𝑎𝑗 ∈ 𝐴𝑗 (𝑘 + 1 < 𝑗 ≤ 𝑛). Let 𝑝 =
∏𝑘(𝑝1, 𝑝2,… , 𝑝𝑘,… , 𝑝𝑛) ∈ ∏𝑘(𝑅) and 𝑞 = ∏𝑘(𝑞1, 𝑞2,… , 𝑞𝑘,… , 𝑞𝑛) ∈ ∏𝑘(𝑅) with 𝑝 = 𝑞.
Then 𝑝𝑗 = 𝑞𝑗 for all 𝑗 ∈ �̂�. Since (𝑝1, 𝑝2,… , 𝑝𝑛), (𝑞1, 𝑞2,… , 𝑞𝑛) ∈ 𝑅, 𝑓𝑘(𝑝1, 𝑝2,… , 𝑝𝑘) =
𝑝𝑘+1+𝑅(𝑘+1�̂�) and 𝑓𝑘(𝑞1, 𝑞2,… , 𝑞𝑘) = 𝑞𝑘+1+𝑅(𝑘+1�̂�). But (0𝐴1

, 0𝐴2
,… , 0𝐴𝑘

, 𝑝𝑘+1−𝑞𝑘+1,… ,
𝑝𝑛 −𝑞𝑛) = (𝑝1, 𝑝2,… , 𝑝𝑘, 𝑝𝑘+1,… , 𝑝𝑛) − (𝑞1, 𝑞2,… , 𝑞𝑘, 𝑞𝑘+1,… , 𝑞𝑛) ∈ 𝑅. Therefore, 𝑝𝑘+1 −

𝑞𝑘+1 ∈ 𝑅(𝑘+1�̂�). Hence, 𝑝𝑘+1+𝑅(𝑘+1�̂�) = 𝑞𝑘+1+𝑅(𝑘+1�̂�), so 𝑓𝑘 is well-defined. Verify
that 𝑓𝑘 is a surjective ring homomorphism. �

Theorem 6. Let 𝐴1, 𝐴2,… ,𝐴𝑛 be a finite collection of rings. If 𝑅 is a subring of

𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 and sequence {Λ𝑖}𝑖=𝑛𝑖=1 that satisfies the recurrence relation Λ𝑖 =
ρ−1(𝐺𝑓𝑖−1)where 𝑓𝑖−1 ∶ Λ𝑖−1 → 𝑅(𝑖∅)

𝑅(𝑖𝑖−1) with initial conditionsΛ1 ∶= 𝑅(1∅), thenΛ𝑗 = Π𝑗(𝑅)
for all 𝑗 ≥ 2 and 𝑓𝑗 is a ring epimorphism for all 𝑗 < 𝑛.

Proof. We will use induction on 𝑗. For 𝑗 = 2. The map 𝑓1 ∶ Λ1 ∶= 𝑅(1∅) = π1(𝑅) =
Π1(𝑅) → 𝑅(2∅)

𝑅(21̂) is a ring epimorphism by Theorem 5. Now we claim that ρ−1(𝐺𝑓1) = Π2(𝑅).
If (𝑎1, 𝑎2) ∈ ρ−1(𝐺𝑓1), then (𝑎1, 𝑎2+ +𝑅(21̂)) = ρ(𝑎1, 𝑎2) ∈ 𝐺𝑓1 and hence 𝑓1(𝑎1) = 𝑎2 +
𝑅(21̂). Consequently, (𝑎1, 𝑎2,… , 𝑎𝑛) ∈ 𝑅 for some 𝑎𝑗 ∈ 𝐴𝑗 (2 < 𝑗 ≤ 𝑛). But (𝑎1, 𝑎2) =
Π2(𝑎1, 𝑎2,… , 𝑎𝑛) ∈ Π2(𝑅) and (𝑎1, 𝑎2) ∈ ρ−1(𝐺𝑓1) imply ρ−1(𝐺𝑓1) ⊆ Π2(𝑅). Con-versely,
let Π2(𝑏1, 𝑏2,… , 𝑏𝑛) ∈ Π2(𝑅). Since (𝑏1, 𝑏2,… , 𝑏𝑛) ∈ 𝑅, we have 𝑓1(𝑏1) = 𝑏2 + 𝑅(21̂).
Hence (𝑏1, 𝑏2) = (𝑏1, 𝑏2 + 𝑅(21̂)) ∈ 𝐺𝑓1 . Thus Π2(𝑏1, 𝑏2,… , 𝑏𝑛) = (𝑏1, 𝑏2) ∈ ρ−1(𝐺𝑓1) and
we conclude that Π2(𝑅) ⊆ ρ−1(𝐺𝑓1). Therefore, Λ2 = ρ−1(𝐺𝑓1) = Π2(𝑅).

Now suppose that Λ𝑘 = Π𝑘(𝑅) and assume the result is true for all 𝑘 ≥ 2. Claim
that ρ−1(𝐺𝑓𝑘) = Π𝑘+1(𝑅), where 𝑓𝑘 ∶ Λ𝑘 = ∏𝑘(𝑅) → 𝑅(𝑘+1∅)

𝑅(𝑘+1�̂�) is a ring epimorphism
by Theorem 5. Let 𝑢 ∈ ρ−1(𝐺𝑓𝑘). Then 𝑢 = (𝑎1, 𝑎2,… , 𝑎𝑘, 𝑎𝑘+1) ∈ Λ𝑘 × 𝑅(𝑘 + 1∅) such
that (𝑎1, 𝑎2,… , 𝑎𝑘, 𝑎𝑘+1 + 𝑅(𝑘 + 1�̂�)) = ρ(𝑎1, 𝑎2,… , 𝑎𝑘, 𝑎𝑘+1) ∈ 𝐺𝑓𝑘 for some elements
(𝑎1, 𝑎2,… , 𝑎𝑘) ∈ Λ𝑘 and 𝑎𝑘+1 ∈ 𝑅(𝑘 + 1∅). Hence, 𝑓𝑘(𝑎1, 𝑎2,… , 𝑎𝑘) = 𝑎𝑘+1 + 𝑅(𝑘 +
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1�̂�). So, (𝑎1, 𝑎2,… , 𝑎𝑘, 𝑎𝑘+1, 𝑎𝑘+2,… , 𝑎𝑛) ∈ 𝑅 for some elements (𝑘 + 1 < 𝑗 ≤ 𝑛).
Thus 𝑢 = (𝑎1, 𝑎2,… , 𝑎𝑘, 𝑎𝑘+1) = Π𝑘+1(𝑎1, 𝑎2,… , 𝑎𝑘, 𝑎𝑘+1, 𝑎𝑘+2,… , 𝑎𝑛) ∈ Π𝑘+1(𝑅)and we
conclude that ρ−1(𝐺𝑓𝑘) ⊆ Π𝑘+1(𝑅). Next, let 𝑣 ∈ Π𝑘+1(𝑅). Then 𝑣 = Π𝑘+1(𝑏1, 𝑏2,… , 𝑏𝑛)
for some element (𝑏1, 𝑏2,… , 𝑏𝑛) ∈ 𝑅 so that 𝑏𝑘+1 ∈ 𝑅(𝑘 + 1∅). By formula 𝑓𝑘, we have
𝑓𝑘(𝑏1, 𝑏2,… , 𝑏𝑘) = 𝑏𝑘+1 +𝑅(𝑘+1�̂�). Therefore ρ(𝑏1, 𝑏2,… , 𝑏𝑘, 𝑏𝑘+1) = (𝑏1, 𝑏2,… , 𝑏𝑘, 𝑏𝑘+1 +
𝑅(𝑘 + 1�̂�)) ∈ 𝐺𝑓𝑘 . Consequently 𝑣 = (𝑏1, 𝑏2,… , 𝑏𝑘, 𝑏𝑘+1) ∈ ρ−1(𝐺𝑓𝑘). So, Π𝑘+1(𝑅) ⊆
ρ−1(𝐺𝑓𝑘) and the claim is verified. We conclude deduce that Λ𝑘+1 = ρ−1(𝐺𝑓𝑘) = Π𝑘+1(𝑅).
�

Theorem 7. Let 𝐴1, 𝐴2,… ,𝐴𝑛 be a finite collection of rings, 𝐼𝑖 is an ideal of 𝐴𝑖 (𝑖 ≠ 1)
and sequence {Λ𝑖}𝑖=𝑛𝑖=1 that satisfies the recurrence relation Λ𝑖 = ρ−1(𝐺𝑓𝑖−1) ⊆ 𝐴1 × 𝐴2 ×
⋯ × 𝐴𝑖 where 𝑓𝑖−1 ∶ Λ𝑖−1 →

𝐴𝑖
𝐼𝑖

is a ring epimorphism with initial conditions Λ1 ∶= 𝐴1.

Then Λ𝑛(𝑖∅) = 𝐴𝑖 (1 ≤ 𝑖 ≤ 𝑛) and Λ𝑛(𝑖𝑖 − 1) = 𝐼𝑖 (1 < 𝑖 ≤ 𝑛).
Proof. Clearly Λ𝑛(𝑖∅) ⊆ 𝐴𝑖. Let 𝑎𝑖 ∈ 𝐴𝑖. Since 𝑓𝑖−1 ∶ Λ𝑖−1 → 𝐴𝑖

𝐼𝑖
is surjective,

there exists (𝑎1, 𝑎2,… , 𝑎𝑖−1) ∈ Λ𝑖−1 such that 𝑓𝑖−1(𝑎1, 𝑎2,… , 𝑎𝑖−1) = 𝑎𝑖 + 𝐼𝑖. Hence,
ρ(𝑎1, 𝑎2,… , 𝑎𝑖−1, 𝑎𝑖) ∈ 𝐺𝑓𝑖−1 so that (𝑎1, 𝑎2,… , 𝑎𝑖) ∈ ρ−1(𝐺𝑓𝑖−1) = Λ𝑖. Since 𝑓𝑖 ∶ Λ𝑖 →

𝐴𝑖+1
𝐼𝑖+1

is
a function, there is 𝑎𝑖+1 ∈ 𝐴𝑖+1 such that 𝑓𝑖(𝑎1, 𝑎2,… , 𝑎𝑖) = 𝑎𝑖+1+𝐼𝑖+1. Which implies that
(𝑎1, 𝑎2,… , 𝑎𝑖+1) ∈ ρ−1(𝐺𝑓𝑖) = Λ𝑖+1. Likewise, (𝑎1, 𝑎2,… , 𝑎𝑖+2) ∈ Λ𝑖+2, (𝑎1, 𝑎2,… , 𝑎𝑖+3) ∈
Λ𝑖+3,… , (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ Λ𝑛 for some 𝑎𝑖+2 ∈ 𝐴𝑖+2, 𝑎𝑖+3 ∈ 𝐴𝑖+3,… , 𝑎𝑛 ∈ 𝐴𝑛. Thus
𝑎𝑖 ∈ Λ𝑛(𝑖∅) and hence 𝐴𝑖 ⊆ Λ𝑛(𝑖∅).

Observe that Λ𝑛(𝑖𝑖 − 1) ⊆ 𝐼𝑖. Suppose 𝑎𝑖 ∈ Λ𝑛(𝑖𝑖 − 1) = ρ−1(𝐺𝑓𝑛−1)(𝑖𝑖 − 1). By
Definition 3, (0𝐴1

, 0𝐴2
,… , 0𝐴𝑖−1

, 𝑎𝑖,… , 𝑎𝑛) ∈ ρ−1(𝐺𝑓𝑛−1) for some 𝑎𝑗 ∈ 𝐴𝑗 (𝑖 < 𝑗 ≤
𝑛). Therefore, we have 𝑓𝑛−1(0𝐴1

, 0𝐴2
,… , 0𝐴𝑖−1

, 𝑎𝑖,… , 𝑎𝑛−1) = 𝑎𝑛 + 𝐼𝑛. Since Λ𝑛−1 is
domain of 𝑓𝑛−1, (0𝐴1

, 0𝐴2
,… , 0𝐴𝑖−1

, 𝑎𝑖,… , 𝑎𝑛−1) ∈ Λ𝑛−1 = ρ−1(𝐺𝑓𝑛−2). Hence, we have
𝑓𝑛−2(0𝐴1

, 0𝐴2
,… , 0𝐴𝑖−1

, 𝑎𝑖,… , 𝑎𝑛−2) = 𝑎𝑛−1 + 𝐼𝑛−1 so that (0𝐴1
, 0𝐴2

,… , 0𝐴𝑖−1
, 𝑎𝑖,… , 𝑎𝑛−2) ∈

Λ𝑛−2 = ρ−1(𝐺𝑓𝑛−3) since Λ𝑛−2 is domain of 𝑓𝑛−2. Similarly, (0𝐴1
, 0𝐴2

,… , 0𝐴𝑖−1
, 𝑎𝑖) ∈ Λ𝑖 =

ρ−1(𝐺𝑓𝑖−1). Consequently, 𝑓𝑖−1(0𝐴1
, 0𝐴2

,… , 0𝐴𝑖−1
) = 𝑎𝑖 + 𝐼𝑖. So, 𝐼𝑖 = 𝑎𝑖 + 𝐼𝑖 since 𝑓𝑖−1 is a

ring homomorphism. Thus we have 𝑎𝑖 ∈ 𝐼𝑖. Next, let 𝑏𝑖 ∈ 𝐼𝑖. Then 𝐼𝑖 = 𝑏𝑖+𝐼𝑖. Since 𝑓𝑖−1 is
a ring homomorphism, 𝑓𝑖−1(0𝐴1

, 0𝐴2
,… , 0𝐴𝑖−1

) = 𝐼𝑖 = 𝑏𝑖 + 𝐼𝑖, whence ρ(0𝐴1
, 0𝐴2

,… , 0𝐴𝑖−1
,

𝑏𝑖) ∈ 𝐺𝑓𝑖−1 . Hence (0𝐴1
, 0𝐴2

,… , 0𝐴𝑖−1
, 𝑏𝑖) ∈ ρ−1(𝐺𝑓𝑖−1) = Λ𝑖. Since 𝑓𝑖 ∶ Λ𝑖 →

𝐴𝑖+1
𝐼𝑖+1

is a
function, there exists 𝑏𝑖+1 ∈ 𝐴𝑖+1 such that 𝑓𝑖(0𝐴1

, 0𝐴2
,… , 0𝐴𝑖−1

, 𝑏𝑖) = 𝑏𝑖+1 + 𝐼𝑖. Thus
(0𝐴1

, 0𝐴2
,… , 0𝐴𝑖−1

, 𝑏𝑖, 𝑏𝑖+1) ∈ ρ−1(𝐺𝑓𝑖) = Λ𝑖+1. Like-wise, (0𝐴1
, 0𝐴2

,… , 0𝐴𝑖−1
, 𝑏𝑖, 𝑏𝑖+1, 𝑏𝑖+2) ∈

Λ𝑖+2, (0𝐴1
, 0𝐴2

,… , 0𝐴𝑖−1
, 𝑏𝑖, 𝑏𝑖+1, 𝑏𝑖+2, 𝑏𝑖+3) ∈ Λ𝑖+3,… , (0𝐴1

, 0𝐴2
,… , 0𝐴𝑖−1

, 𝑏𝑖, 𝑏𝑖+1, … , 𝑏𝑛) ∈
Λ𝑛 for some 𝑏𝑖+2 ∈ 𝐴𝑖+2, 𝑏𝑖+3 ∈ 𝐴𝑖+3,… , 𝑏𝑛 ∈ 𝐴𝑛. Consequently 𝑏𝑖 ∈ Λ𝑛(𝑖𝑖 − 1).

Here is Goursat’s Theorem starting from 𝑛 = 2 (Theorem 8), 𝑛 = 3 (Theorem 10), and
𝑛 = 4 (Theorem 11). We will state the generalization of Goursat’s Theorem in Theorem
12 for 𝑛 ≥ 2.
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Theorem 8. [2] (Goursat’s Theorem for subrings of a direct product of 2 rings) Let

𝐴1 and 𝐴2 be rings, 𝑆 is the set of all subrings of 𝐴1 × 𝐴2, and 𝑇 is the set of all

5-tuples (𝑊1, 𝑆1,𝑊2, 𝑆2, 𝑓 ) where 𝑆𝑖 is an ideal of 𝑊𝑖, 𝑊𝑖 is a subring of 𝐴𝑖 (𝑖 = 1, 2)
and 𝑊1

𝑆1
≅𝑓 𝑊2

𝑆2
. Then there is a one-to-one correspondence between 𝑆 and 𝑇 .

Proof. Let𝑅 ∈ 𝑆 . Then by Theorem 1 and 4, 𝑉 = (𝑅(1∅), 𝑅(1{2}), 𝑅(2∅), 𝑅(2{1}), 𝑓 ) ∈
𝑇 . Now we define α̂ ∶ 𝑆 → 𝑇 by α̂(𝑅) ∶= 𝑉 . Conversely, for an arbitrary 𝑄5 =
(𝑊1, 𝑆1,𝑊2, 𝑆2, 𝑓 ) ∈ 𝑇 the map β̂ ∶ 𝑇 → 𝑆 defined by β̂(𝑄5) ∶= ρ−10 (𝐺𝑓 ). We must
show α̂ and β̂ are mutually inverse. Let 𝑅 ∈ 𝑆 . Then by Theorem 1, β̂(α̂(𝑅)) =
β̂(𝑅(1∅), 𝑅(1{2}), 𝑅(2∅), 𝑅(2{1}), 𝑓 ) = ρ−10 (𝐺𝑓 ) = 𝑅. Next, let 𝑄 = (𝑊1, 𝑆1,𝑊2, 𝑆2, 𝑓 ) ∈
𝑇 . Then by Theo- rem 2, α̂(β̂(𝑄)) = α̂(ρ−10 (𝐺𝑓 )) = ((ρ−10 (𝐺𝑓 )(1∅),ρ−10 (𝐺𝑓 )(1{2}),ρ−10
(𝐺𝑓 )(2∅),ρ−10 (𝐺𝑓 )(2{1}), 𝑔) = 𝑄.

Theorem 9. (Asymmetric version of Goursat’s Theorem for subrings of a direct

product of 2 rings) Let 𝐴1 and 𝐴2 be rings, 𝑆 is the set of all subrings of 𝐴1 × 𝐴2,

and 𝑇4 is the set of all 4-tuples (𝑊1,𝑊2, 𝑆2, 𝑓1) where 𝑆2 is an ideal of 𝑊2, 𝑊𝑖 is a

subring of 𝐴𝑖 (𝑖 = 1, 2), and 𝑓1 ∶ 𝑊1 → 𝑊2
𝑆2

is a ring epimorphism. Then there is a

one-to-one correspondence between 𝑆 and 𝑇4.
Proof. Suppose 𝑅 ∈ 𝑆 . Then 4-tuple (𝑅(1∅), 𝑅(2∅), 𝑅(2{1}), 𝑓1) ∈ 𝑇4 since 𝑅(2{1})

is an ideal of 𝑅(2∅), 𝑅(1∅) is a subring of 𝐴𝑖 (by Theorem 4), and 𝑓1 ∶ 𝑅(1∅) → 𝑅(2∅)
𝑅(2{1})

is a ring epimorphism (by Theorem 5). Define a map α2 ∶ 𝑆 → 𝑇4 by α2(𝑅) ∶=
(𝑅(1∅), 𝑅(2∅), 𝑅(2{1}), 𝑓1). Conversely, define a function β2 ∶ 𝑇4 → 𝑆 by β2(𝑄4) ∶=
ρ−1(𝐺𝑓1) for all 𝑄4 = (𝑊1,𝑊2, 𝑆2, 𝑓 ) ∈ 𝑇4. Now, let 𝑅 ∈ 𝑆 . Then by Theorem 5,
there exists a ring epimorphism 𝑓1 ∶ 𝑅(1∅) → 𝑅(2∅)

𝑅(2{1}) . By Theorem 6, β2(α(𝑅)) =
β2(𝑅(1∅), 𝑅(2∅), 𝑅(2{1}), 𝑓1) = ρ−1(𝐺𝑓1) = Λ2 = Π2(𝑅) = 𝑅. Finally, suppose that 𝑄 =
(𝑊1,𝑊2, 𝑆2, 𝑓1) ∈ 𝑇4. Then by Theorem 7,

Λ2(2{1}), 𝑔1) = 𝑄. The maps α2 and β2 are inverse to each other.

Theorem 10. (Goursat’s Theorem for subrings of a direct product of 3 rings) Let 𝐴1,

𝐴2, and 𝐴2 be rings, 𝑆 is the set of all subrings of 𝐴1 × 𝐴2 × 𝐴3, and 𝑇7 is the set of all

7-tuples (𝑊1,𝑊2, 𝑆2, 𝑓1,𝑊3, 𝑆3, 𝑓2) where 𝑆𝑗 is an ideal of (𝑗 ≠ 1), 𝑊𝑖 is a subring

of 𝐴𝑖, both 𝑓1 ∶ 𝑊1 →
𝑊2
𝑆2

and 𝑓2 ∶ β2(𝑊1,𝑊2, 𝑆2, 𝑓1) →
𝑊3
𝑆3

are ring epimorphisms with

β2 as defined in Theorem 9. Then there is a one-to-one correspondence 𝑆 and 𝑇7.
Proof. Let𝑅 ∈ 𝑆 . Then according to Theorem 4 and 6, (𝑅(1∅), 𝑅(2∅), 𝑅(21̂), 𝑓1, 𝑅(3∅),

𝑅(32̂), 𝑓2) ∈ 𝑇7. Thus define a function α3 ∶ 𝑆 → 𝑇7 by α3(𝑅) ∶= (𝑅(1∅), 𝑅(2∅), 𝑅(21̂),
𝑓1, 𝑅(3∅), 𝑅(32̂), 𝑓2). Conversely, suppose that 𝑄7 = (𝑊1,𝑊2, 𝑆2, 𝑓1,𝑊3, 𝑆3, 𝑓2) ∈
𝑇7. Define a function β3 ∶ 𝑇7 → 𝑆 by β3(𝑄7) ∶= ρ−1(𝐺𝑓2). Next, we prove α3
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and β3 are inverse to each other. Let 𝑅 ∈ 𝑆 . Then by Theorem 6, β3(α3(𝑅)) =
β3(𝑅(1∅), 𝑅(2∅), 𝑅(21̂), 𝑓1, 𝑅(3∅), 𝑅(32̂), 𝑓2) = ρ−1(𝐺𝑓2) = Λ3 = Π3(𝑅) = 𝑅. Finally,
let 𝑄7 = (𝑊1,𝑊2, 𝑆2, 𝑓1,𝑊3, 𝑆3, 𝑓2) ∈ 𝑇4. Then by Theorem 7, we have α3(β3(𝑄7)) =
α3(ρ−1(𝐺𝑓2)) = (ρ−1(𝐺𝑓2)(1∅),ρ

−1(𝐺𝑓2)(2∅),ρ
−1(𝐺𝑓2)(21̂), 𝑔1, ρ

−1(𝐺𝑓2)(3∅),ρ
−1(𝐺𝑓2)(32̂),

𝑔2) = (Λ3(1∅),Λ3(2∅),Λ3(21̂), 𝑔1,Λ3(3∅),Λ3(32̂), 𝑔2) = 𝑄7.

Theorem 11. (Goursat’s Theorem for subrings of a direct product of 4 rings) Let

𝐴1,𝐴2,𝐴3, and 𝐴4 be rings, 𝑆 is the set of all subrings of 𝐴1 × 𝐴2 × 𝐴3 × 𝐴4, and 𝑇10
is the set of all 10-tuples (𝑊1,𝑊2, 𝑆2, 𝑓1,𝑊3, 𝑆3, 𝑓2,𝑊4, 𝑆4, 𝑓3) where 𝑆𝑗 is an ideal of

(𝑗 ≠ 1), 𝑊𝑖 is a subring of 𝐴𝑖, 𝑓1 ∶ 𝑊1 → 𝑊2
𝑆2
, 𝑓2 ∶ β2(𝑊1,𝑊2, 𝑆2, 𝑓1) →

𝑊3
𝑆3
, and

𝑓3 ∶ β2(β2(𝑊1,𝑊2, 𝑆2, 𝑓1),𝑊3, 𝑆3, 𝑓2) →
𝑊4
𝑆4

with 𝑓𝑖 is a ring epimorphism and β2 as

defined in Theorem 9. Then there is a one-to-one correspondence 𝑆 and 𝑇10.
Proof. Define the mapping α4 ∶ 𝑆 → 𝑇10 by α4(𝑅) ∶= (𝑅(1∅), 𝑅(2∅), 𝑅(21̂), 𝑓1, 𝑅(3∅),

𝑅(32̂), 𝑓2, 𝑅(4∅), 𝑅(43̂), 𝑓3) ∈ 𝑇10 for all 𝑅 ∈ 𝑆; and β4 ∶ 𝑇10 → 𝑆 by β4(𝑄10) ∶=
ρ−1(𝐺𝑓3) ∈ 𝑆 for all𝑄10 = (𝑊1,𝑊2, 𝑆2, 𝑓1,𝑊3, 𝑆3, 𝑓2,𝑊4, 𝑆4, 𝑓3) ∈ 𝑇10. Applying Theorem
6 and 7, we conclude that α4 and β4 are inverse bijections.

We will generalize to a higher direct product. To shorten notation (domain of 𝑓𝑖), we
use the recurrence relation β2(Λ𝑖,𝑊𝑖+1, 𝑆𝑖+1, 𝑓𝑖) ∶= ρ(𝐺𝑓𝑖) = Λ𝑖+1 with initial conditions
Λ1 ∶= 𝑊1 (see Theorem 7).

Theorem 12. (Goursat’s Theorem for subrings of a direct product of 𝑛 rings). Let

𝐴1, 𝐴2,… ,𝐴𝑛 be a finite collection of rings, 𝑆 is the set of all subrings of 𝐴1×𝐴2×⋯×𝐴𝑛,

and 𝑇3𝑛−2 is the set of all (3𝑛 − 2)-tuples 𝑄3𝑛−2 ∶= (𝑊1,𝑊2, 𝑆2, 𝑓1,𝑊3, 𝑆3, 𝑓2,… ,𝑊𝑛, 𝑆𝑛,
𝑓𝑛−1) where 𝑆𝑗 is an ideal of (𝑗 ≠ 1), 𝑊𝑖 is a subring of 𝐴𝑖, and 𝑓𝑖 ∶ Λ𝑖 →

𝑊𝑖+1
𝑆𝑖+1

,

(1 ≤ 𝑖 < 𝑛) is a ring epimorphism. Here sequence {Λ𝑖}𝑖=𝑛𝑖=1 that satisfies the recurrence

relation Λ𝑖+1 = β2(Λ𝑖,𝑊𝑖+1, 𝑆𝑖+1, 𝑓𝑖) ⊆ 𝐴1 ×𝐴2 ×⋯×𝐴𝑖+1 with initial conditions Λ1 ∶= 𝑊1

and β2 as defined in Theorem 9. Then there is a one-to-one correspondence 𝑆 and

𝑇3𝑛−2.
Proof. Define a map α𝑛 ∶ 𝑆 → 𝑇3𝑛−2 by α𝑛(𝑅) ∶= (𝑅(1∅), 𝑅(2∅), 𝑅(21̂), 𝑓1, 𝑅(3∅),

𝑅(32̂), 𝑓2,… , 𝑅(𝑛∅), 𝑅(𝑛𝑛 − 1), 𝑓𝑛−1) ∈ 𝑇3𝑛−2 for all 𝑅 ∈ 𝑆 . Conversely, define a map
β𝑛 ∶ 𝑇3𝑛−2 → 𝑆 by β𝑛(𝑄3𝑛−2) ∶= ρ−1(𝐺𝑓𝑛−1) ∈ 𝑆 for all 𝑄3𝑛−2 = (𝑊1,𝑊2, 𝑆2, 𝑓1,𝑊3,
𝑆3, 𝑓2,… ,𝑊𝑛, 𝑆𝑛, 𝑓𝑛−1) ∈ 𝑇3𝑛−2. Now suppose that 𝑅 ∈ 𝑆 . Then by Theorem 6,
β𝑛(α𝑛(𝑅)) = β𝑛(𝑅(1∅), 𝑅(2∅), 𝑅(21̂), 𝑓1, 𝑅(3∅), 𝑅(32̂), 𝑓2,… ,𝑅(𝑛∅), 𝑅(𝑛𝑛 − 1), 𝑓𝑛−1) =
ρ−1(𝐺𝑓𝑛−1) = Λ𝑛 = Π𝑛(𝑅) = 𝑅. Finally, suppose that 𝑄3𝑛−2 = (𝑊1,𝑊2, 𝑆2, 𝑓1,𝑊3, 𝑆3,
𝑓2,… ,𝑊𝑛, 𝑆𝑛, 𝑓𝑛−1) ∈ 𝑇3𝑛−2. Then by Theorem 7, α𝑛(β𝑛(𝑄3𝑛−2)) = α𝑛(ρ−1(𝐺𝑓𝑛−1)) =
α𝑛(Λ𝑛) = (Λ𝑛(1∅),Λ𝑛(2∅),Λ𝑛(21̂), 𝑔1,Λ𝑛(3∅),Λ𝑛(32̂), 𝑔2,… ,
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Λ𝑛(𝑛∅),Λ𝑛(𝑛𝑛 − 1), 𝑔𝑛−1) = (𝑊1,𝑊2, 𝑆2, 𝑓1,𝑊3, 𝑆3, 𝑓2,… ,𝑊𝑛, 𝑆𝑛, 𝑓𝑛−1) = 𝑄3𝑛−2 and
this completes the proof.

4. CONCLUSION

The set of all subrings of 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛, denoted by 𝑆 , has a one-to-one corre-
spondence with the set of all (3𝑛 − 2)-tuples (𝑊1,𝑊2, 𝑆2, 𝑓1,𝑊3, 𝑆3, 𝑓2,… ,𝑊𝑛, 𝑆𝑛, 𝑓𝑛−1),
denoted by 𝑇3𝑛−2, such that 𝑆𝑗 is an ideal of (𝑗 ≠ 1), 𝑊𝑖 is a subring of 𝐴𝑖, and

𝑓𝑖 ∶ Λ𝑖 → 𝑊𝑖+1
𝑆𝑖+1

(1 ≤ 𝑖 < 𝑛) is a ring epimorphism, where sequence {Λ𝑖}𝑖=𝑛𝑖=1 that
satisfies the recurrence relation Λ𝑖+1 = β2(Λ𝑖,𝑊𝑖+1, 𝑆𝑖+1, 𝑓𝑖) with initial conditions
Λ1 ∶= 𝑊1. The mutually inverse maps constructed are α𝑛 ∶ 𝑆 → 𝑇3𝑛−2 defined by
α𝑛(𝑅) ∶= (𝑅(1∅), 𝑅(2∅), 𝑅(21̂), 𝑅(21̂), 𝑓1, 𝑅(3∅), 𝑅(32̂), 𝑓2,… ,𝑅(𝑛∅), 𝑅(𝑛𝑛 − 1), 𝑓𝑛−1)
and β𝑛 ∶ 𝑇3𝑛−2 → 𝑆 defined by β𝑛(𝑄3𝑛−2) ∶= ρ−1(𝐺𝑓𝑛−1).
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