Corresponding Author: Hery Susanto; email:
hery.susanto.fmipa@um.ac.id

Published: 27 March 2024

Publishing services provided by
Knowledge E
© Muhsang Sudadama Lieko Liedokto et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Selection and Peer-review under the responsibility of the ICMScE Conference Committee.

G OPEN ACCESS

Research Article

Generalization of Goursat's Theorem for Subrings of Direct Products of \mathbf{n} Rings

Muhsang Sudadama Lieko Liedokto, Hery Susanto*, and I Made Sulandra
Department of Mathematics, Universitas Negeri Malang, Jalan Semarang 5, Malang 65145, Indonesia

ORCID
Muhsang Sudadama Lieko Liedokto: https://orcid.org/0000-0003-0296-0454
Hery Susanto: https://orcid.org/0000-0002-1424-444X
I Made Sulandra: https://orcid.org/0000-0003-3023-7562

Abstract

. Bauer et al. describe Goursat's theorem, representing the characteristics of subgroups of a direct product of two or more groups. In this paper, we expand into a ring structure that describes the characteristics of subrings of a direct product of rings. This research method is to analogize the evidence by Bauer et al. in the group for generalization. In our main results, every subring of the direct product of rings is determined by ring epimorphism between the ring and factor ring.

Keywords: Goursat's theorem, subrings, rings

1. INTRODUCTION

Edouard Goursat [1], a French mathematician, discovered Goursat's Theorem, which describes the characteristics of subgroups of the direct product of two groups, i.e., an isomorphism between factor groups of subgroups of the given groups determines each subgroup of the direct product of two groups. Give an instance of applying the Goursat's Theorem to determine the subgroups of $G_{1} \times G_{2}$, to be counted the number of subgroups of $S_{3} \times S_{3}$, and to prove the Lemma Zassenhaus [2]. They also describe how can state Goursat's Theorem in the context of rings, ideals, subrings and modules. Goursat's Theorem to give explicit formulas for a total number of subgroups of $Z_{m} \times Z_{n}$ and a total number of subrings of $Z_{m} \times Z_{n}[3,4]$. This theorem is further applied to provide an exact formula for the total number of subgroups of a finite abelian p-group $Z_{p^{m}} \times Z_{p^{n}} \times Z_{p^{\prime}}$ [5]. Then extends Goursat's Theorem to R-module [6], whereas expand to R-algebraic [7].

Other researchers have extensively used Goursat's Theorem to advance algebra [3-$5,8-15]$. Therefore, this theorem is important to be studied in more depth; for example, Bauer et al. [12] generalize to a direct product of groups by designing an asymmetric
version of Goursat's Theorem for the two groups and then applying recursively. Then extends to a direct product of modules [16]. However, to the best of our knowledge, there has been no research on expanding the Goursat Theorem to the direct product of n rings. This theorem is critical for following researchers to examine and use, particularly in ring structures. Therefore, this study aimed to investigate the Goursat Theorem's extension to the direct product of n rings.

2. RESEARCH METHOD

This research analogizes the findings obtained in the group to generalize to rings by devising an asymmetric version of Goursat's Theorem for two rings that then apply recursively [12].

3. RESULT AND DISCUSSION

Let A_{1} and A_{2} be rings with zero elements $0_{A_{i}}$ respectively, I_{1} is an ideal of A_{1}, and I_{2} is an ideal of A_{2}. The graph of ring homomorphism $f: A_{1} \rightarrow A_{2}$, denoted by G_{f}, is the set $\left\{\left(a_{1}, a_{2}\right) \in A_{1} \times A_{2} f\left(a_{1}\right)=a_{2}\right\}$. It is clear immediate that G_{f} is a subring of $A_{1} \times A_{2}$. Associated to $A_{1} \times A_{2}$ there are some natural homomorphisms: $\pi_{1}: A_{1} \times A_{2} \rightarrow A_{1}$, $\Pi_{2}: A_{1} \times A_{2} \rightarrow A_{2}, \mathrm{l}_{1}: A_{1} \rightarrow A_{1} \times A_{2}, \mathrm{l}_{2}: A_{2} \rightarrow A_{1} \times A_{2}, \rho: A_{1} \times A_{2} \rightarrow A_{1} \times \frac{A_{2}}{I_{2}}$, and $\rho_{0}: A_{1} \times A_{2}$
$\rightarrow \frac{A_{1}}{I_{1}} \times \frac{A_{2}}{I_{2}}$. Here, we write $A_{1} \cong{ }^{f} A_{2}$ to denote that A_{1} and A_{2} are isomorphic via a ring isomorphism f.

Theorem 1. Let A_{1} and A_{2} be rings, R is a subring of $A_{1} \times A_{2}$. Then $\frac{\pi_{1}(R)}{1_{1}^{1-1}(R)} \cong^{f} \frac{\pi_{2}(R)}{L_{2}^{-1}(R)}$ and $\rho_{0}{ }^{-1}\left(\boldsymbol{G}_{f}\right)=R$.

Proof. Define a map $f: \frac{\mathrm{T}_{1}(R)}{\mathrm{L}_{1}^{-1}(R)} \rightarrow \frac{\mathrm{T}_{2}(R)}{\mathrm{L}_{2}^{-1}(R)}$ by $f\left(a_{1}+\mathrm{t}_{1}^{-1}(R)\right):=a_{2}+\mathrm{l}_{2}^{-1}(R)$ when $\left(a_{1}, a_{2}\right) \in R$. Suppose that $\frac{a_{1}+1_{1}^{-1}(R), b_{1}+l_{1}^{-1}(R) \in \pi_{1}(R)}{1_{1}^{-1}(R)}$ with $a_{1}+1_{1}^{-1}(R)=b_{1}+1_{1}^{-1}(R)$. Then $a_{1}-b_{1} \in \mathrm{t}_{1}{ }^{-1}(R)$. Since $a_{1} \in \Pi_{1}(R)$ and $b_{1} \in \pi_{1}(R),\left(a_{1}, x\right),\left(b_{1}, y\right) \in R$ for some $x, y \in A_{2}$, whence $f\left(a_{1}+\mathrm{l}_{1}^{-1}(R)\right)=x+\mathrm{l}_{2}^{-1}(R)$ and $f\left(b_{1}+\mathrm{l}_{1}^{-1}(R)\right)=y+\mathrm{l}_{2}^{-1}(R)$. Thus $\left(0_{A_{1}}, x-y\right)=$ $\left(a_{1}, x\right)-\left(b_{1}, y\right)-\left(a_{1}-b_{1}, 0_{A_{2}}\right) \in R$ since R is a subring of $A_{1} \times A_{2}$. Therefore, $x-y \in \iota_{2}^{-1}(R)$ and hence $x+1_{2}^{-1}(R)=y+1_{2}^{-1}(R)$. Verify that f is a ring epimorphism. Finally, let $p_{1}+\mathrm{t}_{1}^{-1}(R), q_{1}+\mathrm{t}_{1}^{-1}(R) \in \frac{\pi_{1}(R)}{1_{1}^{-1}(R)}$ with $f\left(p_{1}+\mathrm{t}_{1}^{-1}(R)\right)=f\left(q_{1}+\mathrm{t}_{1}^{-1}(R)\right)$. Since $p_{1} \in \pi_{1}(R)$ and $q_{1} \in \Pi_{1}(R)\left(p_{1}, p_{2}\right),\left(q_{1}, q_{2}\right) \in R$ for some $p_{2}, q_{2} \in A_{2}$, so that $p_{2}+\mathrm{l}_{2}^{-1}(R)=q_{2}+⿺_{2}^{-1}(R)$. Consequently, $\left(p_{1}-q_{1}, 0_{A_{2}}\right)=\left(p_{1}, p_{2}\right)-\left(q_{1}, q_{2}\right)-\left(0_{A_{1}}, p_{2}-q_{2}\right) \in R$ since R is a subring of $A_{1} \times A_{2}$.

Suppose that $\left(a_{1}, a_{2}\right) \in \rho_{0}{ }^{-1}\left(G_{f}\right)$. Then $\left(a_{1}+\iota_{1}{ }^{-1}(R), a_{2}+\iota_{2}^{-1}(R)\right)=\rho_{0}\left(a_{1}, a_{2}\right) \in G_{f}$, so that $f\left(a_{1}+\mathrm{l}_{1}^{-1}(R)\right)=a_{2}+\mathrm{l}_{2}^{-1}(R)$. Thus $\left(a_{1}, a_{2}\right) \in R$. Let $\left(b_{1}, b_{2}\right) \in R$. Then $b_{1} \in \pi_{1}(R)$ and $b_{2} \in \Pi_{2}(R)$. Therefore, $\rho_{0}\left(b_{1}, b_{2}\right)=\left(b_{1}+\mathrm{t}_{1}^{-1}(R), b_{2}+\mathrm{I}_{2}^{-1}(R)\right) \in G_{f}$. Thus $\left(b_{1}, b_{2}\right) \in$ $\rho_{0}{ }^{-1}\left(G_{f}\right)$.

Theorem 2. Let A_{1} and A_{2} be rings, I_{i} is an ideal of A_{i}. If $\frac{A_{1}}{I_{1}} \xlongequal{f} \frac{A_{2}}{I_{2}}$ then (i) Π_{1} $\left(\rho_{0}^{-1}\left(G_{f}\right)\right)=A_{1}$, (ii) $\Pi_{2}\left(\rho_{0}^{-1}\left(G_{f}\right)\right)=A_{2}$, (iii) $\iota_{1}^{-1}\left(\rho_{0}^{-1}\left(G_{f}\right)\right)=I_{1}$, and (iv) $\mathrm{t}_{2}^{-1}\left(\rho_{0}{ }^{-1}\left(G_{f}\right)\right)=$ I_{2}.

Proof. (i) Clearly $\pi_{1}\left(\rho_{0}{ }^{-1}\left(G_{f}\right)\right) \subseteq A_{1}$. Suppose that $a_{1} \in A_{1}$. There exists an element $a_{2} \in A_{2}$ such that $\left(a_{1}+I_{1}\right)=a_{2}+I_{2}$. Hence $\rho_{0}\left(a_{1}, a_{2}\right)=\left(a_{1}+I_{1}, a_{2}+I_{2}\right) \in G_{f}$, whence $\left(a_{1}, a_{2}\right) \in \rho_{0}{ }^{-1}\left(G_{f}\right)$ and we get $a_{1} \in \Pi_{1}\left(\rho_{0}{ }^{-1}\left(G_{f}\right)\right)$. (ii) Suppose that $a_{2} \in A_{2}$. There exists an element $a_{1} \in A_{1}$ such that $f\left(a_{1}+I_{1}\right)=a_{2}+I_{2}$ since f is surjective. Thus $a_{2} \in \Pi_{2}\left(\rho_{0}{ }^{-1}\left(G_{f}\right)\right)$. (iii) Suppose $a_{1} \in 1_{1}^{1-1}\left(\rho_{0}^{-1}\left(G_{f}\right)\right)$. Then $\rho_{0}\left(a_{1}, 0_{A_{2}}\right) \in G_{f}$ and hence $f\left(a_{1}+I_{1}\right)=I_{2}=f\left(I_{1}\right)$. Since f is injective, $a_{1}+I_{1}=I_{1}$. Therefore, $a_{1} \in I_{1}$. Conversely, if $b_{1} \in I_{1}$, then $b_{1}+I_{1}=I_{1}$. Thus $\left(b_{1}+I_{1}\right)=f\left(I_{1}\right)=I_{2}$. Consequently, $\rho_{0}\left(b_{1}, 0_{A_{2}}\right)=\left(b_{1}+I_{1}, I_{2}\right) \in G_{f}$. Therefore, $b_{1} \in \mathrm{I}_{1}^{-1}\left(\rho_{0}^{-1}\left(\boldsymbol{G}_{f}\right)\right)$. (iv) is proved similarly. \boxtimes

Definition 3. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a finite collection of rings and let R be a nonempty subset of $A_{1} \times A_{2} \times \cdots \times A_{n}$. If $S \subset \hat{n}:=\{1,2, \ldots, n\}$ and $j \in \hat{n}-S$, let
$R(j S):=\left\{a_{j} \in A_{j}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R\right.$ for some $a_{i} \in A_{i}, i \in \hat{n}-\{j\}$ with $a_{i}=0_{A_{i}}$ if $\left.i \in S\right\}$
For example, $R(2 \hat{n}-\{2\}):=\left\{a_{2} \in A_{2}\left(0_{A_{1}}, a_{2}, 0_{A_{3}}, 0_{A_{4}}, \ldots, 0_{A_{n}}\right) \in R\right\}$ and $R(1\{4,5, \ldots$, $n\}):=\left\{a_{1} \in A_{1}\left(a_{1}, a_{2}, a_{3}\right.\right.$,
$\left.0_{A_{4}}, 0_{A_{5}}, \ldots, 0_{A_{n}}\right) \in R$ for some $\left.a_{2} \in A_{2}, a_{3} \in A_{3}\right\}$. Let R be a subring of $A_{1} \times A_{2}$. By Theorem $1, \frac{R(1 \varnothing)}{R(1\{2\})} \cong \frac{R(2 \varnothing)}{R(2\{1\})}$ since $\pi_{1}(R)=R(1 \varnothing), \pi_{2}(R)=R(2 \varnothing), \mathrm{t}_{1}{ }^{-1}(R)=R(1\{2\})$, and $\mathrm{t}_{2}{ }^{-1}(R)=R(2\{1\})$. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a finite collection of rings, and let Π_{i} : $A_{1} \times A_{2} \times \cdots \times A_{n} \rightarrow A_{i}$ be given by $\pi_{i}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{i}, i \in \hat{n}, \pi_{i}$ is called the standard projection onto the i th factor. Of course $\pi_{i}(R)=R(i \varnothing)$ for all subring $\subseteq A_{1} \times A_{2} \times \cdots \times A_{n}$. Now we define $\prod_{i}: A_{1} \times A_{2} \times \cdots \times A_{n} \rightarrow A_{1} \times A_{2} \times \cdots \times A_{i}$ by $\prod_{i}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=$ $\left(a_{1}, a_{2}, \ldots, a_{i}\right), i \in \hat{n}, \prod_{i}$ is called the standard projection onto the first i factors (e.g., $\prod_{1}=\Pi_{1}$ and $\prod_{n}=i d_{A_{1} \times A_{2} \times \cdots \times A_{n}}$.

Theorem 4. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a finite collection of rings and $j \in \hat{n}-S$. If R is a subring of $A_{1} \times A_{2} \times \cdots \times A_{n}$ then $R(j S)$ is a subring of A_{j} and $R(j S)$ is an ideal of $R(j T)$ with $T \subseteq S$.

Proof. Let $a, b \in R(j S)$. Then $a=a_{j}$ and $b=b_{j}$ such that $\left(a_{1}, a_{2}, \ldots, a_{j}, \ldots, a_{n}\right)$, $\left(b_{1}, b_{2}, \ldots, b_{j}, \ldots, b_{n}\right) \in R$ where $a_{i}=b_{i}=0_{A_{i}}(i \in S)$ and for some $a_{i}, b_{i} \in A_{i}(i \in$ $\hat{n}-S \cup\{j\})$. Since R is a subring of $A_{1} \times A_{2} \times \cdots \times A_{n},\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-\right.$ $\left.b_{n}\right),\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right) \in R$. We have $a-b=a_{j}-b_{j} \in R(j S)$ and $a b=a_{j} b_{j} \in R(j S)$,
because $a_{i}-b_{i}=a_{i} b_{i}=0_{A_{i}}(i \in S)$ and there exists $a_{i}-b_{i}, a_{i} b_{i} \in A_{i}(i \in \hat{n}-S \cup\{j\})$. Therefore, $R(j S)$ is a subring of A_{j}. Note that $R(j S)$ is a subring of $R(j T)$ since both $R(j S)$ and $R(j T)$ are subring of A_{j} and $(j S) \subseteq R(j T)$. Suppose $u \in R(j S)$ and $r \in R(j T)$. Then $u=u_{j}$ and $r=r_{j}$ such that $\left(u_{1}, u_{2}, \ldots, u_{j}, \ldots, u_{n}\right),\left(r_{1}, r_{2}, \ldots, r_{j}\right.$, $\left., \ldots, r_{n}\right) \in R$ where component $u_{i}=0_{A_{i}}(i \in S)$ and $r_{i}=0_{A_{i}}(i \in T)$; for some $u_{i} \in A_{i}(i \in \hat{n}-S \cup\{j\})$ and $r_{i} \in A_{i}(i \in \hat{n}-T \cup\{j\})$. Since R is a subring of $A_{1} \times A_{2} \times \cdots \times A_{n},\left(u_{1} r_{1}, u_{2} r_{2}, \ldots, u_{j} r_{j}, \ldots, u_{n} r_{n}\right) \in R$. Furthermore, $u r=u_{j} r_{j} \in R(j S)$ since $u_{i} r_{i}=0_{A_{i}} r_{i}=0_{A_{i}}(i \in S)$ and there exists $u_{i} r_{i} \in A_{i}(i \in \hat{n}-S \cup\{j\})$. Thus $R(j S)$ is a right ideal of $R(j T)$. The proof for $R(j S)$ is a left ideal of $R(j T)$ is similar. \boxtimes

Theorem 5. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a finite collection of rings. If R is a subring of $A_{1} \times A_{2} \times \cdots \times A_{n}$ then $f_{k}: \prod_{k}(R) \rightarrow \frac{R(k+1 \varnothing)}{R(k+1 \hat{k})}(1 \leq k<n)$ is a ring epimorphism.

Proof. Define a map $f_{k}: \prod_{k}(R) \rightarrow \frac{R(k+1 \varnothing)}{R(k+1 \hat{k})}$ by $f_{k}\left(a_{1}, a_{2}, \ldots, a_{k}\right):=a_{k+1}+R(k+$ $1 \hat{k})$ when $\left(a_{1}, a_{2}, a_{k}, a_{k+1}, \ldots, a_{n}\right) \in R$ for some $a_{j} \in A_{j}(k+1<j \leq n)$. Let $p=$ $\prod_{k}\left(p_{1}, p_{2}, \ldots, p_{k}, \ldots, p_{n}\right) \in \prod_{k}(R)$ and $q=\prod_{k}\left(q_{1}, q_{2}, \ldots, q_{k}, \ldots, q_{n}\right) \in \prod_{k}(R)$ with $p=q$. Then $p_{j}=q_{j}$ for all $j \in \hat{k}$. Since $\left(p_{1}, p_{2}, \ldots, p_{n}\right),\left(q_{1}, q_{2}, \ldots, q_{n}\right) \in R, f_{k}\left(p_{1}, p_{2}, \ldots, p_{k}\right)=$ $p_{k+1}+R(k+1 \hat{k})$ and $f_{k}\left(q_{1}, q_{2}, \ldots, q_{k}\right)=q_{k+1}+R(k+1 \hat{k})$. But $\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{k}}, p_{k+1}-q_{k+1}, \ldots\right.$,
$\left.p_{n}-q_{n}\right)=\left(p_{1}, p_{2}, \ldots, p_{k}, p_{k+1}, \ldots, p_{n}\right)-\left(q_{1}, q_{2}, \ldots, q_{k}, q_{k+1}, \ldots, q_{n}\right) \in R$. Therefore, $p_{k+1}-$ $q_{k+1} \in R(k+1 \hat{k})$. Hence, $p_{k+1}+R(k+1 \hat{k})=q_{k+1}+R(k+1 \hat{k})$, so f_{k} is well-defined. Verify that f_{k} is a surjective ring homomorphism. \boxtimes

Theorem 6. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a finite collection of rings. If R is a subring of $A_{1} \times A_{2} \times \cdots \times A_{n}$ and sequence $\left\{\Lambda_{i}\right\}_{i=1}^{i=n}$ that satisfies the recurrence relation $\Lambda_{i}=$ $\rho^{-1}\left(G_{f_{i-1}}\right)$ where $f_{i-1}: \Lambda_{i-1} \rightarrow \frac{R(i \varnothing)}{R(i i-1)}$ with initial conditions $\Lambda_{1}:=R(1 \varnothing)$, then $\Lambda_{j}=\Pi_{j}(R)$ for all $j \geq 2$ and f_{j} is a ring epimorphism for all $j<n$.

Proof. We will use induction on j. For $j=2$. The map $f_{1}: \Lambda_{1}:=R(1 \varnothing)=\pi_{1}(R)=$ $\Pi_{1}(R) \rightarrow \frac{R(2 \varnothing)}{R(2 \hat{1})}$ is a ring epimorphism by Theorem 5 . Now we claim that $\rho^{-1}\left(G_{f_{1}}\right)=\Pi_{2}(R)$. If $\left(a_{1}, a_{2}\right) \in \rho^{-1}\left(G_{f_{1}}\right)$, then $\left(a_{1}, a_{2}++R(2 \hat{1})\right)=\rho\left(a_{1}, a_{2}\right) \in G_{f_{1}}$ and hence $f_{1}\left(a_{1}\right)=a_{2}+$ $R(2 \hat{1})$. Consequently, $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R$ for some $a_{j} \in A_{j}(2<j \leq n)$. But $\left(a_{1}, a_{2}\right)=$ $\Pi_{2}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \Pi_{2}(R)$ and $\left(a_{1}, a_{2}\right) \in \rho^{-1}\left(G_{f_{1}}\right)$ imply $\rho^{-1}\left(G_{f_{1}}\right) \subseteq \Pi_{2}(R)$. Con-versely, let $\Pi_{2}\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \Pi_{2}(R)$. Since $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in R$, we have $f_{1}\left(b_{1}\right)=b_{2}+R(2 \hat{1})$. Hence $\left(b_{1}, b_{2}\right)=\left(b_{1}, b_{2}+R(2 \hat{1})\right) \in G_{f_{1}}$. Thus $\Pi_{2}\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(b_{1}, b_{2}\right) \in \rho^{-1}\left(G_{f_{1}}\right)$ and we conclude that $\Pi_{2}(R) \subseteq \rho^{-1}\left(G_{f_{1}}\right)$. Therefore, $\Lambda_{2}=\rho^{-1}\left(\boldsymbol{G}_{f_{1}}\right)=\Pi_{2}(R)$.

Now suppose that $\Lambda_{k}=\Pi_{k}(R)$ and assume the result is true for all $k \geq 2$. Claim that $\rho^{-1}\left(G_{f_{k}}\right)=\Pi_{k+1}(R)$, where $f_{k}: \Lambda_{k}=\prod_{k}(R) \rightarrow \frac{R(k+1 \varnothing)}{R(k+1 \hat{k})}$ is a ring epimorphism by Theorem 5. Let $u \in \rho^{-1}\left(G_{f_{k}}\right)$. Then $u=\left(a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}\right) \in \Lambda_{k} \times R(k+1 \varnothing)$ such that $\left(a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}+R(k+1 \hat{k})\right)=\rho\left(a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}\right) \in G_{f_{k}}$ for some elements $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \Lambda_{k}$ and $a_{k+1} \in R(k+1 \varnothing)$. Hence, $f_{k}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=a_{k+1}+R(k+$
$1 \hat{k})$. So, $\left(a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}, a_{k+2}, \ldots, a_{n}\right) \in R$ for some elements $a_{a_{j} \in A_{j}}(k+1<j \leq n)$. Thus $u=\left(a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}\right)=\Pi_{k+1}\left(a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}, a_{k+2}, \ldots, a_{n}\right) \in \Pi_{k+1}(R)$ and we conclude that $\rho^{-1}\left(G_{f_{k}}\right) \subseteq \Pi_{k+1}(R)$. Next, let $v \in \Pi_{k+1}(R)$. Then $v=\Pi_{k+1}\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ for some element $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in R$ so that $b_{k+1} \in R(k+1 \varnothing)$. By formula f_{k}, we have $f_{k}\left(b_{1}, b_{2}, \ldots, b_{k}\right)=b_{k+1}+R(k+1 \hat{k})$. Therefore $\rho\left(b_{1}, b_{2}, \ldots, b_{k}, b_{k+1}\right)=\left(b_{1}, b_{2}, \ldots, b_{k}, b_{k+1}+\right.$ $R(k+1 \hat{k})) \in G_{f_{k}}$. Consequently $v=\left(b_{1}, b_{2}, \ldots, b_{k}, b_{k+1}\right) \in \rho^{-1}\left(G_{f_{k}}\right)$. So, $\Pi_{k+1}(R) \subseteq$ $\rho^{-1}\left(G_{f_{k}}\right)$ and the claim is verified. We conclude deduce that $\Lambda_{k+1}=\rho^{-1}\left(G_{f_{k}}\right)=\Pi_{k+1}(R)$.区

Theorem 7. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a finite collection of rings, I_{i} is an ideal of $A_{i}(i \neq 1)$ and sequence $\left\{\Lambda_{i}\right\}_{i=1}^{i=n}$ that satisfies the recurrence relation $\Lambda_{i}=\rho^{-1}\left(G_{f_{i-1}}\right) \subseteq A_{1} \times A_{2} \times$ $\cdots \times A_{i}$ where $f_{i-1}: \Lambda_{i-1} \rightarrow \frac{A_{i}}{I_{i}}$ is a ring epimorphism with initial conditions $\Lambda_{1}:=A_{1}$. Then $\wedge_{n}(i \varnothing)=A_{i}(1 \leq i \leq n)$ and $\wedge_{n}(\underline{i-1})=I_{i}(1<i \leq n)$.

Proof. Clearly $\Lambda_{n}(i \varnothing) \subseteq A_{i}$. Let $a_{i} \in A_{i}$. Since $f_{i-1}: \Lambda_{i-1} \rightarrow \frac{A_{i}}{I_{i}}$ is surjective, there exists $\left(a_{1}, a_{2}, \ldots, a_{i-1}\right) \in \Lambda_{i-1}$ such that $f_{i-1}\left(a_{1}, a_{2}, \ldots, a_{i-1}\right)=a_{i}+I_{i}$. Hence, $\rho\left(a_{1}, a_{2}, \ldots, a_{i-1}, a_{i}\right) \in G_{f_{i-1}}$ so that $\left(a_{1}, a_{2}, \ldots, a_{i}\right) \in \rho^{-1}\left(G_{f_{i-1}}\right)=\Lambda_{i}$. Since $f_{i}: \Lambda_{i} \rightarrow \frac{A_{i+1}}{I_{i+1}}$ is a function, there is $a_{i+1} \in A_{i+1}$ such that $f_{i}\left(a_{1}, a_{2}, \ldots, a_{i}\right)=a_{i+1}+I_{i+1}$. Which implies that $\left(a_{1}, a_{2}, \ldots, a_{i+1}\right) \in \rho^{-1}\left(G_{f_{i}}\right)=\Lambda_{i+1}$. Likewise, $\left(a_{1}, a_{2}, \ldots, a_{i+2}\right) \in \Lambda_{i+2},\left(a_{1}, a_{2}, \ldots, a_{i+3}\right) \in$ $\Lambda_{i+3}, \ldots,\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \Lambda_{n}$ for some $a_{i+2} \in A_{i+2}, a_{i+3} \in A_{i+3}, \ldots, a_{n} \in A_{n}$. Thus $a_{i} \in \Lambda_{n}(i \varnothing)$ and hence $A_{i} \subseteq \Lambda_{n}(i \varnothing)$.

Observe that $\Lambda_{n}(\underline{i \underline{i-1}}) \subseteq I_{i}$. Suppose $a_{i} \in \Lambda_{n}(\underline{i \underline{i-1}})=\rho^{-1}\left(G_{f_{n-1}}\right)(\underline{i i-1})$. By Definition 3, $\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, a_{i}, \ldots, a_{n}\right) \in \rho^{-1}\left(G_{f_{n-1}}\right)$ for some $a_{j} \in A_{j}(i<j \leq$ $n)$. Therefore, we have $f_{n-1}\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, a_{i}, \ldots, a_{n-1}\right)=a_{n}+I_{n}$. Since Λ_{n-1} is domain of $f_{n-1},\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, a_{i}, \ldots, a_{n-1}\right) \in \Lambda_{n-1}=\rho^{-1}\left(G_{f_{n-2}}\right)$. Hence, we have $f_{n-2}\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, a_{i}, \ldots, a_{n-2}\right)=a_{n-1}+I_{n-1}$ so that $\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, a_{i}, \ldots, a_{n-2}\right) \in$ $\Lambda_{n-2}=\rho^{-1}\left(\boldsymbol{G}_{f_{n-3}}\right)$ since Λ_{n-2} is domain of f_{n-2}. Similarly, $\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, a_{i}\right) \in \Lambda_{i}=$ $\rho^{-1}\left(G_{f_{i-1}}\right)$. Consequently, $f_{i-1}\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}\right)=a_{i}+I_{i}$. So, $I_{i}=a_{i}+I_{i}$ since f_{i-1} is a ring homomorphism. Thus we have $a_{i} \in I_{i}$. Next, let $b_{i} \in I_{i}$. Then $I_{i}=b_{i}+I_{i}$. Since f_{i-1} is a ring homomorphism, $f_{i-1}\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}\right)=I_{i}=b_{i}+I_{i}$, whence $\rho\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}\right.$, $\left.b_{i}\right) \in G_{f_{i-1}}$. Hence $\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, b_{i}\right) \in \rho^{-1}\left(G_{f_{i-1}}\right)=\Lambda_{i}$. Since $f_{i}: \Lambda_{i} \rightarrow \frac{A_{i+1}}{I_{i+1}}$ is a function, there exists $b_{i+1} \in A_{i+1}$ such that $f_{i}\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, b_{i}\right)=b_{i+1}+I_{i}$. Thus $\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, b_{i}, b_{i+1}\right) \in \rho^{-1}\left(G_{f_{i}}\right)=\Lambda_{i+1}$. Like-wise, $\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, b_{i}, b_{i+1}, b_{i+2}\right) \in$ $\Lambda_{i+2},\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, b_{i}, b_{i+1}, b_{i+2}, b_{i+3}\right) \in \Lambda_{i+3}, \ldots,\left(0_{A_{1}}, 0_{A_{2}}, \ldots, 0_{A_{i-1}}, b_{i}, b_{i+1}, \ldots, b_{n}\right) \in$ Λ_{n} for some $b_{i+2} \in A_{i+2}, b_{i+3} \in A_{i+3}, \ldots, b_{n} \in A_{n}$. Consequently $b_{i} \in \Lambda_{n}(\underline{i \underline{-1})}$.

Here is Goursat's Theorem starting from $n=2$ (Theorem 8), $n=3$ (Theorem 10), and $n=4$ (Theorem 11). We will state the generalization of Goursat's Theorem in Theorem 12 for $n \geq 2$.

Theorem 8. [2] (Goursat's Theorem for subrings of a direct product of 2 rings) Let A_{1} and A_{2} be rings, S is the set of all subrings of $A_{1} \times A_{2}$, and T is the set of all 5-tuples ($W_{1}, S_{1}, W_{2}, S_{2}, f$) where S_{i} is an ideal of W_{i}, W_{i} is a subring of $A_{i}(i=1,2)$ and $\frac{W_{1}}{S_{1}} \cong \frac{W_{2}}{S_{2}}$. Then there is a one-to-one correspondence between S and T.

Proof. Let $R \in S$. Then by Theorem 1 and $4, V=(R(1 \varnothing), R(1\{2\}), R(2 \varnothing), R(2\{1\}), f) \in$ T. Now we define $\hat{\alpha}: S \rightarrow T$ by $\hat{\alpha}(R):=V$. Conversely, for an arbitrary $Q_{5}=$ $\left(W_{1}, S_{1}, W_{2}, S_{2}, f\right) \in T$ the map $\hat{\beta}: T \rightarrow S$ defined by $\hat{\beta}\left(Q_{5}\right):=\rho_{0}^{-1}\left(G_{f}\right)$. We must show $\hat{\alpha}$ and $\hat{\beta}$ are mutually inverse. Let $R \in S$. Then by Theorem $1, \hat{\beta}(\hat{\alpha}(R))=$ $\hat{\beta}(R(1 \varnothing), R(1\{2\}), R(2 \varnothing), R(2\{1\}), f)=\rho_{0}^{-1}\left(G_{f}\right)=R$. Next, let $Q=\left(W_{1}, S_{1}, W_{2}, S_{2}, f\right) \in$ T. Then by Theo- rem $2, \hat{\alpha}(\hat{\beta}(Q))=\hat{\alpha}\left(\rho_{0}^{-1}\left(G_{f}\right)\right)=\left(\left(\rho_{0}^{-1}\left(G_{f}\right)(1 \varnothing), \rho_{0}^{-1}\left(G_{f}\right)(1\{2\}), \rho_{0}^{-1}\right.\right.$ $\left.\left(G_{f}\right)(2 \varnothing), \rho_{0}^{-1}\left(G_{f}\right)(2\{1\}), g\right)=Q$.

Theorem 9. (Asymmetric version of Goursat's Theorem for subrings of a direct product of 2 rings) Let A_{1} and A_{2} be rings, S is the set of all subrings of $A_{1} \times A_{2}$, and T_{4} is the set of all 4-tuples $\left(W_{1}, W_{2}, S_{2}, f_{1}\right)$ where S_{2} is an ideal of W_{2}, W_{i} is a subring of $A_{i}(i=1,2)$, and $f_{1}: W_{1} \rightarrow \frac{W_{2}}{S_{2}}$ is a ring epimorphism. Then there is a one-to-one correspondence between S and T_{4}.

Proof. Suppose $R \in S$. Then 4-tuple ($\left.R(1 \varnothing), R(2 \varnothing), R(2\{1\}), f_{1}\right) \in T_{4}$ since $R(2\{1\})$ is an ideal of $R(2 \varnothing), R(1 \varnothing)$ is a subring of A_{i} (by Theorem 4), and $f_{1}: R(1 \varnothing) \rightarrow \frac{R(2 \varnothing)}{R(2\{1\})}$ is a ring epimorphism (by Theorem 5). Define a map $\alpha_{2}: S \rightarrow T_{4}$ by $\alpha_{2}(R):=$ $\left(R(1 \varnothing), R(2 \varnothing), R(2\{1\}), f_{1}\right)$. Conversely, define a function $\beta_{2}: T_{4} \rightarrow S$ by $\beta_{2}\left(Q_{4}\right):=$ $\rho^{-1}\left(G_{f_{1}}\right)$ for all $Q_{4}=\left(W_{1}, W_{2}, S_{2}, f\right) \in T_{4}$. Now, let $R \in S$. Then by Theorem 5, there exists a ring epimorphism $f_{1}: R(1 \varnothing) \rightarrow \frac{R(2 \varnothing)}{R(2\{1])}$. By Theorem 6, $\beta_{2}(\alpha(R))=$ $\beta_{2}\left(R(1 \varnothing), R(2 \varnothing), R(2\{1\}), f_{1}\right)=\rho^{-1}\left(G_{f_{1}}\right)=\Lambda_{2}=\Pi_{2}(R)=R$. Finally, suppose that $Q=$ $\left(W_{1}, W_{2}, S_{2}, f_{1}\right) \quad \in \quad T_{4}$. Then by Theorem 7, $\alpha_{2}\left(\beta_{2}(Q)\right)=\alpha_{2}\left(\rho^{-1}\left(\mathcal{G}_{f_{1}}\right)\right)=\left(\rho^{-1}\left(\mathcal{G}_{f_{1}}\right)(N \varnothing), \rho^{-1},\left(\mathcal{G}_{f_{1}}\right) \nmid\left(2 \mid \not \mathcal{Q}_{1}\right), \rho^{-1}\left(\mathcal{G}_{f_{1}}\right)(2 \mid\{1\}), g_{1}\right)=\left(\begin{array}{ll}2 & (\mid \varnothing) \quad 2(\mid \varnothing)\end{array}\right.$
$\left.\Lambda_{2}(2\{1\}), g_{1}\right)=Q$. The maps α_{2} and β_{2} are inverse to each other.
Theorem 10. (Goursat's Theorem for subrings of a direct product of 3 rings) Let A_{1}, A_{2}, and A_{2} be rings, S is the set of all subrings of $A_{1} \times A_{2} \times A_{3}$, and T_{7} is the set of all 7-tuples ($W_{1}, W_{2}, S_{2}, f_{1}, W_{3}, S_{3}, f_{2}$) where S_{j} is an ideal of ${ }^{W_{j}}(j \neq 1), W_{i}$ is a subring of A_{i}, both $f_{1}: W_{1} \rightarrow \frac{W_{2}}{S_{2}}$ and $f_{2}: \beta_{2}\left(W_{1}, W_{2}, S_{2}, f_{1}\right) \rightarrow \frac{W_{3}}{S_{3}}$ are ring epimorphisms with β_{2} as defined in Theorem 9. Then there is a one-to-one correspondence S and T_{7}.

Proof. Let $R \in S$. Then according to Theorem 4 and $6,\left(R(1 \varnothing), R(2 \varnothing), R(2 \hat{1}), f_{1}, R(3 \varnothing)\right.$, $\left.R(3 \hat{2}), f_{2}\right) \in T_{7}$. Thus define a function $\alpha_{3}: S \rightarrow T_{7}$ by $\alpha_{3}(R):=(R(1 \varnothing), R(2 \varnothing), R(2 \hat{1})$, $\left.f_{1}, R(3 \varnothing), R(3 \hat{2}), f_{2}\right)$. Conversely, suppose that $Q_{7}=\left(W_{1}, W_{2}, S_{2}, f_{1}, W_{3}, S_{3}, f_{2}\right) \in$ T_{7}. Define a function $\beta_{3}: T_{7} \rightarrow S$ by $\beta_{3}\left(Q_{7}\right):=\rho^{-1}\left(G_{f_{2}}\right)$. Next, we prove α_{3}
and β_{3} are inverse to each other. Let $R \in S$. Then by Theorem $6, \beta_{3}\left(\alpha_{3}(R)\right)=$ $\beta_{3}\left(R(1 \varnothing), R(2 \varnothing), R(2 \hat{1}), f_{1}, R(3 \varnothing), R(3 \hat{2}), f_{2}\right)=\rho^{-1}\left(G_{f_{2}}\right)=\Lambda_{3}=\Pi_{3}(R)=R$. Finally, let $Q_{7}=\left(W_{1}, W_{2}, S_{2}, f_{1}, W_{3}, S_{3}, f_{2}\right) \in T_{4}$. Then by Theorem 7, we have $\alpha_{3}\left(\beta_{3}\left(Q_{7}\right)\right)=$ $\alpha_{3}\left(\rho^{-1}\left(G_{f_{2}}\right)\right)=\left(\rho^{-1}\left(G_{f_{2}}\right)(1 \varnothing), \rho^{-1}\left(G_{f_{2}}\right)(2 \varnothing), \rho^{-1}\left(G_{f_{2}}\right)(2 \hat{1}), g_{1}, \rho^{-1}\left(G_{f_{2}}\right)(3 \varnothing), \rho^{-1}\left(G_{f_{2}}\right)(3 \hat{2})\right.$, $\left.g_{2}\right)=\left(\Lambda_{3}(1 \varnothing), \Lambda_{3}(2 \varnothing), \Lambda_{3}(2 \hat{1}), g_{1}, \Lambda_{3}(3 \varnothing), \Lambda_{3}(3 \hat{2}), g_{2}\right)=Q_{7}$.

Theorem 11. (Goursat's Theorem for subrings of a direct product of 4 rings) Let A_{1}, A_{2}, A_{3}, and A_{4} be rings, S is the set of all subrings of $A_{1} \times A_{2} \times A_{3} \times A_{4}$, and T_{10} is the set of all 10-tuples ($W_{1}, W_{2}, S_{2}, f_{1}, W_{3}, S_{3}, f_{2}, W_{4}, S_{4}, f_{3}$) where S_{j} is an ideal of $W_{j}(j \neq 1), W_{i}$ is a subring of $A_{i}, f_{1}: W_{1} \rightarrow \frac{W_{2}}{S_{2}}, f_{2}: \beta_{2}\left(W_{1}, W_{2}, S_{2}, f_{1}\right) \rightarrow \frac{W_{3}}{S_{3}}$, and $f_{3}: \beta_{2}\left(\beta_{2}\left(W_{1}, W_{2}, S_{2}, f_{1}\right), W_{3}, S_{3}, f_{2}\right) \rightarrow \frac{W_{4}}{S_{4}}$ with f_{i} is a ring epimorphism and β_{2} as defined in Theorem 9. Then there is a one-to-one correspondence S and T_{10}.

Proof. Define the mapping $\alpha_{4}: S \rightarrow T_{10}$ by $\alpha_{4}(R):=\left(R(1 \varnothing), R(2 \varnothing), R(2 \hat{1}), f_{1}, R(3 \varnothing)\right.$, $\left.R(3 \hat{2}), f_{2}, R(4 \varnothing), R(4 \hat{3}), f_{3}\right) \in T_{10}$ for all $R \in S$; and $\beta_{4}: T_{10} \rightarrow S$ by $\beta_{4}\left(Q_{10}\right):=$ $\rho^{-1}\left(G_{f_{3}}\right) \in S$ for all $Q_{10}=\left(W_{1}, W_{2}, S_{2}, f_{1}, W_{3}, S_{3}, f_{2}, W_{4}, S_{4}, f_{3}\right) \in T_{10}$. Applying Theorem 6 and 7 , we conclude that α_{4} and β_{4} are inverse bijections.

We will generalize to a higher direct product. To shorten notation (domain of f_{i}), we use the recurrence relation $\beta_{2}\left(\Lambda_{i}, W_{i+1}, S_{i+1}, f_{i}\right):=\rho\left(G_{f_{i}}\right)=\Lambda_{i+1}$ with initial conditions $\Lambda_{1}:=W_{1}$ (see Theorem 7).

Theorem 12. (Goursat's Theorem for subrings of a direct product of n rings). Let $A_{1}, A_{2}, \ldots, A_{n}$ be a finite collection of rings, S is the set of all subrings of $A_{1} \times A_{2} \times \cdots \times A_{n}$, and $T_{3 n-2}$ is the set of all (3n-2)-tuples $Q_{3 n-2}:=\left(W_{1}, W_{2}, S_{2}, f_{1}, W_{3}, S_{3}, f_{2}, \ldots, W_{n}, S_{n}\right.$, $\left.f_{n-1}\right)$ where S_{j} is an ideal of ${ }_{W_{j}}(j \neq 1), W_{i}$ is a subring of A_{i}, and $f_{i}: \Lambda_{i} \rightarrow \frac{W_{i+1}}{S_{i+1}}$, $(1 \leq i<n)$ is a ring epimorphism. Here sequence $\left\{\Lambda_{i}\right\}_{i=1}^{i=n}$ that satisfies the recurrence relation $\Lambda_{i+1}=\beta_{2}\left(\Lambda_{i}, W_{i+1}, S_{i+1}, f_{i}\right) \subseteq A_{1} \times A_{2} \times \cdots \times A_{i+1}$ with initial conditions $\Lambda_{1}:=W_{1}$ and β_{2} as defined in Theorem 9. Then there is a one-to-one correspondence S and $T_{3 n-2}$.

Proof. Define a map $\alpha_{n}: S \rightarrow T_{3 n-2}$ by $\alpha_{n}(R):=\left(R(1 \varnothing), R(2 \varnothing), R(2 \hat{1}), f_{1}, R(3 \varnothing)\right.$, $\left.R(3 \hat{2}), f_{2}, \ldots, R(n \varnothing), R(n n-1), f_{n-1}\right) \in T_{3 n-2}$ for all $R \in S$. Conversely, define a map $\beta_{n}: T_{3 n-2} \rightarrow S$ by $\beta_{n}\left(Q_{3 n-2}\right):=\rho^{-1}\left(G_{f_{n-1}}\right) \in S$ for all $Q_{3 n-2}=\left(W_{1}, W_{2}, S_{2}, f_{1}, W_{3}\right.$, $\left.S_{3}, f_{2}, \ldots, W_{n}, S_{n}, f_{n-1}\right) \in T_{3 n-2}$. Now suppose that $R \in S$. Then by Theorem 6, $\beta_{n}\left(\alpha_{n}(R)\right)=\beta_{n}\left(R(1 \varnothing), R(2 \varnothing), R(2 \hat{1}), f_{1}, R(3 \varnothing), R(3 \hat{2}), f_{2}, \ldots, R(n \varnothing), R(n n-1), f_{n-1}\right)=$ $\rho^{-1}\left(G_{f_{n-1}}\right)=\Lambda_{n}=\Pi_{n}(R)=R$. Finally, suppose that $Q_{3 n-2}=\left(W_{1}, W_{2}, S_{2}, f_{1}, W_{3}, S_{3}\right.$, $\left.f_{2}, \ldots, W_{n}, S_{n}, f_{n-1}\right) \in T_{3 n-2}$. Then by Theorem 7, $\alpha_{n}\left(\beta_{n}\left(Q_{3 n-2}\right)\right)=\alpha_{n}\left(\rho^{-1}\left(G_{f_{n-1}}\right)\right)=$ $\alpha_{n}\left(\Lambda_{n}\right)=\left(\Lambda_{n}(1 \varnothing), \Lambda_{n}(2 \varnothing), \Lambda_{n}(2 \hat{1}), g_{1}, \Lambda_{n}(3 \varnothing), \Lambda_{n}(3 \hat{2}), g_{2}, \ldots\right.$,

$$
\left.\wedge_{n}(n \varnothing), \Lambda_{n}(n \underline{n-1}), \quad g_{n-1}\right)=\left(W_{1}, W_{2}, S_{2}, f_{1}, W_{3}, S_{3}, f_{2}, \ldots, W_{n}, S_{n}, f_{n-1}\right)=Q_{3 n-2} \text { and }
$$ this completes the proof.

4. CONCLUSION

The set of all subrings of $A_{1} \times A_{2} \times \cdots \times A_{n}$, denoted by S, has a one-to-one correspondence with the set of all $(3 n-2)$-tuples ($\left.W_{1}, W_{2}, S_{2}, f_{1}, W_{3}, S_{3}, f_{2}, \ldots, W_{n}, S_{n}, f_{n-1}\right)$, denoted by $T_{3 n-2}$, such that S_{j} is an ideal of $W_{j}(j \neq 1), W_{i}$ is a subring of A_{i}, and $f_{i}: \Lambda_{i} \rightarrow \frac{W_{i+1}}{S_{i+1}}(1 \leq i<n)$ is a ring epimorphism, where sequence $\left\{\Lambda_{i}\right\}_{i=1}^{i=n}$ that satisfies the recurrence relation $\Lambda_{i+1}=\beta_{2}\left(\Lambda_{i}, W_{i+1}, S_{i+1}, f_{i}\right)$ with initial conditions $\Lambda_{1}:=W_{1}$. The mutually inverse maps constructed are $\alpha_{n}: S \rightarrow T_{3 n-2}$ defined by $\alpha_{n}(R):=\left(R(1 \varnothing), R(2 \varnothing), R(2 \hat{1}), R(2 \hat{1}), f_{1}, R(3 \varnothing), R(3 \hat{2}), f_{2}, \ldots, R(n \varnothing), R(n \underline{n-1}), f_{n-1}\right)$ and $\beta_{n}: T_{3 n-2} \rightarrow S$ defined by $\beta_{n}\left(Q_{3 n-2}\right):=\rho^{-1}\left(G_{f_{n-1}}\right)$.

References

[1] Goursat E. "Sur les substitutions orthogonales et les divisions régulières de l'espace," Annales scientifiques de l'École normale supérieure. vol. 6, p. 1889.
[2] Anderson DD, Camillo V. "Subgroups of direct products of groups, ideals and subrings of direct products of rings, and Goursat's lemma," Presented at the (2009). https://doi.org/10.1090/conm/480/09364.
[3] Tóth L. "Subgroups of finite abelian groups having rank two via Goursat's Lemma," Tatra Mountains Mathematical Publications. vol. 59, no. 1, p. 2014.
[4] L. Tóth, "Counting subrings of the ring Zm \times Zn.," Journal of the Korean Mathematical Society. vol. 56, no. 6, p. 2019.
[5] Oh JM. "An explicit formula for the number of subgroups of a finite abelian p-group up to rank 3.," Communications of the Korean Mathematical Society. vol. 28, no. 4, p. 2013. https://doi.org/10.4134/CKMS.2013.28.4.649.
[6] Dickson SE. On algebras of finite representation type. Trans Am Math Soc. 1969;135(0):127-41.
[7] F. Meng, J. Guo, and L. Guo, "On the extensions of Zassenhaus Lemma and Goursat's Lemma to algebraic structures,." Journal of Mathematics. vol. 2022, p. 2022. https://doi.org/10.1155/2022/7705500.
[8] B.R.A. Mbarga, "Homomorphic relations and Goursat Lemma.," Earthline Journal of Mathematical Sciences. p. 2022. https://doi.org/10.34198/ejms.10122.169181.
[9] Petrillo J. "Student research projects Goursat's other theorem," The College Mathematics Journal. vol. 40, no. 2, p. 2010.
[10] Kublik K. Generalizations of Goursat's theorem for groups. Rose-Hulman Undergraduate Mathematics Journal. 2010;11(1):6
[11] M. Hampejs, N. Holighaus, L. Tóth, and C. Wiesmeyr, "Representing and counting the subgroups of the group Zm \times Zn.," Journal of Numbers. vol. 2014, p. 2014. https://doi.org/10.1155/2014/491428.
[12] Bauer K, Sen D, Zvengrowski P. "A generalized Goursat lemma.," Tatra Mountains Mathematical Publications. vol. 64, no. 1, p. 2015. https://doi.org/10.1515/tmmp-20150039.
[13] D. neuen and P. Schweitzer, "Subgroups of 3-factor direct products.," Tatra Mountains Mathematical Publications. vol. 73, no. 1, p. 2019.
[14] B. Masterson and G. Pfeiffer, "On the table of marks of a direct product of finite groups.," Journal of Algebra. vol. 499, p. 2018. https://doi.org/10.1016/j.jalgebra.2017.12.019.
[15] B.R.A. Mbarga, "Decomposition of Goursat matrices and subgroups of Zm x Zn.," Earthline Journal of Mathematical Sciences. p. 2021. https://doi.org/10.34198/ejms.6221.439454.
[16] Mbarga BR. "Some remarks on Goursat lemma.," Algebraic Structures and their Applications. vol. 8, no. 2, p. 2021.

