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Abstract.
Topological Quantum Field Theory or TQFT is a quantum field theory that calculates
topological invariance in measurement theory and mathematical physics. In recent
years, several attempts have been made to find efficient observations to determine
the TQFT of quasiparticle properties. In this paper, we propose a different and very
effective way to detect the critical points of TQFT by considering the system functions.
We suggest the C-Function as a novel probe that is accurate for detecting the location
of critical points on topological quantum. The C-function uses a holographic model to
show a topological quantum phase transition between a simple topological isolation
phase and a gapless Weyl semimetal. The quantum tipping point displays a strong
Lifshitz-like anisotropy in the spatial direction, and a quantum phase transition that
does not follow the standard Landau paradigm. The C-function precisely shows the
global features of quantum criticality and distinguishes very accurately between
two separate zero-temperature phases. Considering the C-function relationship with
entanglement entropy can detect quantum phase transitions and can be applied
outside the holographic framework.
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1. INTRODUCTION

The effect of phase transitions provides a rapid development in physics, and its relation
to quantum theory [1]. the quantum phase occurs at absolute zero [2], the effect resulting
in a condensedmatter paradigm shift, thus generally not accepting theGinzburg-Landau
description [3]. The effect is often difficult to explain, as is the pattern of spontaneous
symmetry breaking. This case also occurs in transition metal insulators [4].

In the area of topological quantum phase transition (TQFT), in quantum space systems
display exotic features such as fractional statistics and topological degeneration [5]. This
parameter serves to sort, calculate the local quantity indicating the location of the TQFT,
also has an impact on the development of quantum physics. Parameters serve to sort,
calculate local quantities that indicate the location of TQFT [6]. C-functions can detect
phase transitions. Reorganizing degrees of freedom along key transitions understands
the two distinct phases involved. In relativistic theory, to find the effective number of
degrees of freedom provided by the C-function [7].

Monotone nature of the degrees of freedom along with the normalized group flow,
the C-function theorem guarantees. The dof number decreases monotonically towards
lower energies and its validity is closely related to the energy state of absolute zero
temperature [8]. At each point, it will coincide with the central charge of the system, and
prove its connection with the theory of degrees of freedom..

Weyl semimetals (WS) is a band structure characterized by a point singularity, the two
bands at contact produce a linearly spreading cone [9]. The low energy descriptions at
these points display relativistic symmetry, and are described by chiral Weyl spinors that
always appear in pairs [10]. WS exhibits exotic transport properties which are a direct
consequence of anomalous quantum field theory [11]. In order to understand the basic
dynamics of WS and TQFT it is necessary to consider the weak and simple paired field
theory of the fermionic lagrangian [12].

2. RESEARCH METHOD

We propose the C-Function as a novel probe that is accurate for detecting the location
of critical points in a topological quantum. The C-function uses a holographic model to
demonstrate the topological quantum phase transitions between a simple topological
isolating phase and a gapless Weyl semimetal. The quantum critical point displays a
strong Lifshitz-like anisotropy in the spatial direction, and a quantum phase transition
that does not follow Landau’s standard paradigm. The C-function pinpoints the global
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feature of quantum criticality and distinguishes it very accurately between two separate
zero-temperature phases. Considering the relationship of C-functions to entanglement
entropy can detect quantum phase transitions and can be applied outside the holo-
graphic framework.

3. RESULT AND DISCUSSION

To reveal a critical point in the quantum, we must first obtain the numerical background,
while maintaining a dimensionless temperature ̂𝑇 . We are particularly interested in
times of zero and very low temperatures in ( ̂𝑇 ≃ 0.005). Nevertheless, we have checked
directly that similar results are obtained for slightly larger values ( ̂𝑇 ≃ 0.05; 0.1).

To find the quantum tipping point, we compute a C-function corresponding to the
entangled surface, with a boundary length large enough to extend itinto the mass. This
type of entangled territory to probe into IR, and provides good accuracy in finding phase
transitions. The C-function has the advantage that its values are valid and well defined
even for the anisotropic phase. We can calculate this feature throughout the full phase
diagram by taking advantage of this feature (𝑀, 𝑇 ).

Practically speaking, the external parameters �̂� , in the range of which can cover
three different theoretical phases, are; on insulators which are trivial ( �̂� > 0.744) ,
critical points (�̂� ∼ 0.744), and the semimetal Weyl ( �̂� < 0.744).

The C-function also develops a clear pattern. As we approach the quantum tipping
point, it increases and reaches a maximum value, right at the quantum tipping point
with Lifshitz-like symmetry. In this sense, the C-function acts as a very accurate probe
to find the tipping point of the quantum topology.

When 𝑇 − 0 the geometry is near the horizon, the region in the background is
anisotropic space-time like Lifshitz. can also be calculated analytically in conceptual
geometry, this type maintains anisotropy along the flow𝑅𝐺. By direct application of the
band formulas, we also obtain an independent cut-off term, which is as follows:

𝑆⊥ ≃ −𝑁2𝐻⊥𝐻‖
β⊥

−1

𝑙1+
1
𝑥

𝑥

, (1)

𝑆‖ ≃ −𝑁2𝐻2
⊥
β‖

−1

𝑙2𝑧𝑦
, (2)

The dotted line in the figure above shows the position of the quantum critical point
𝑀𝑐 ∼ 0.744, Both functions have normalized magnitudes for presentational reasons.
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Figure 1: Parallel and transverse C-functions when ̂𝑇 = 0, 005 in external parameter functions
𝑀 .

With.β‖ and and β⊥ is a constant that depends on the effective dimension, which goes
through the gamma function.

Since we are focusing on the suitable surface with a large winding distance, we can
use for the purpose of obtaining analytical results, approx. for equations (1) and (2), and
the effective dimensions are determined for the region 𝐼𝑅 as in the numerical method.
By extracting the C-function from the entropy of the windings, we get 𝑐⊥ − β⊥

−1(1 + 1
𝑧 )

and 𝑐‖ − β‖
−12𝑧with proper normalization. Two functions converge to 𝑧 − 1 be a single

value because β‖−β⊥. Far from the quantum tipping point, the constant reflects the AdS
property of a fixed point for �̂� ≷ �̂�𝑐 . At the quantum tipping point 𝑀𝑐 , the system’s
symmetry changes, resulting in a splitting of the C-function where 𝑐⊥ − 𝑐‖ in and its
discontinuous jump in value into a new constant, each depending on the corresponding
effective dimension ( 𝑑⊥, 𝑑‖) − (2 +

1
𝑧1/𝑧, 1 + 2𝑧) .

This discontinuity is a characteristic signal of the quantum phase transition at zero
temperature through the C-function. At this low temperature, which is also referred to in
the quantum critical region. this discontinuous feature is smoothed by thermal effects,
with the task of identifying the C-function crossover point. For large entangled surfaces,
both C-functions detect very accurately the position of the anisotropic quantum critical
point. Although the temperature effect is limited, it is a common feature reminiscent
of the so-called quantum critical region, which may make experimental measurements
(which are definitely impossible at zero temperature) more feasible.

To identify the adequate dimensions of numerical data. We isolate the critical expo-
nent by calculating the derivative of the logarithmic ratio 𝑔11/𝑔33, at a fixed radial distance

DOI 10.18502/kls.v8i1.15388 Page 18



ICMScE

and by considering that we can always rescale the transverse metric element to have
a known isotropic scaling.

 
(a)                                                    (b) 

Figure 2: (a) The normal value of the C-function on 𝑇 = 0is of M, (b) The effective dimension
𝑑⊥, and the derivative of EE 𝜕𝑆‖,⊥ /𝜕𝑙⊥ in a function of the external parameter M, around QCP.

The normal value of the C-function at time 𝑇 = 0, is from M. The black line indicates
the value of adS 𝑐/β (𝑑) = 2, which is normalized by . In the figure below, the comparison
scheme used here is for a constant winding length as M varies and, to normalize the
magnitudes are set as presentation grounds. The red and blue lines show the value
of 𝑐⊥/β⊥(𝑑⊥), 𝑐‖/β‖ (𝑑‖) at the quantum critical point where the C-function is clearly
disconnected. we compare and involve shifts in the parameter M, we normalize the
rest of the scale. in principle we want to investigate the theory at a certain energy for
the change in M. Most of the qualitative details of function C are weak in comparison
schemes, whereas its derivatives depend heavily on entanglement.

The turning point of the surface of the holographic winding varies with M. and can also
normalize the length of the entangled surface with respect to the scale energy of the
theory of gravity and maintain this dimensionless quantity constant. While the turning
points and surface lengths vary. for M, the turning point of the holographic surface is
kept constant across the black hole horizon. we obtain clear signals of phase transitions
for large winding surfaces, due to deeply probing IR. The transverse C function develops
maximally when it is at a critical point. On parallel units will be more sensitive to the
schematic, especially for small entangled surfaces, which also still indicate the location
of the critical point.

The C-function contains accurate information for signaling the inner phase transition.
In fact, the phase transition information belongs to the effective dimension 𝑑‖ and 𝑑⊥,
because the critical point has a Lifshitz scaling anisotropy, so it is different from the AdS
phase. We show the behavior of the effective dimension and the EE derivative in the M
function. The exact combination of the two, shows the position of the quantum critical
point with the greatest accuracy. the larger winding surface implies to probe deeper
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into the IR structure. the saddle point derivative of the winding entropy gets closer to
the phase transition point. For the entangled region to be larger at the boundary, the
entanglement entropy receives a contribution from the thermal entropy.

The anomalous conductivity at low temperature with respect to its quartic coupling,
this dashed line indicates the position of the QCP. In a small plot the points correspond
to QCP which is also in relation to the quartic coupling.

 
(a)                                                     (b) 

Figure 3: (a)Anomaly conductivity, (b) The X represents the QCP calculated by functions (𝑐⊥, 𝑐‖)
for various quartic couplings.

The dots are the QCP system, and in the error bars there is support, due to thermal
effects. for the conductivity space anomaly error is close to the benchmark value. C
function can determine QCP with high accuracy. It is shown that the thermal contribution
to the winding entropy does not affect the C-function for finding the probe. Thermal
entropy will provide clues about phase transitions in a temperature-limited system. this
approach is still valid for smaller entangled surfaces, which invariably develop a saddle
point in the critical regime, developing a conductivity anomaly-like behavior, and a phase
transition signal then arrives with a peak whose derivative develops. moment on a large
entangled surface, the two C functions accurately signify QCP.

To better confirm the ability of the C-function to detect the quantum critical point,
we performed a more detailed analysis of the theoretical parameters by changing the
quartic coupling of the model λ. By increasing it, the tipping point 𝑀𝑐 . becomes larger
as shown in Figure 3, Then we calculate the saddle point of the C-function. We show
the ratio between the critical point locations for various criticals and the saddle point
positions of the C-function. The C-function is able to find the quantum critical point with
<1% error.
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Acknowledgments

With uncertainly known phase transitions, it would be interesting to investigate deeper
and more subtle probes, to distinguish topological information from critical points. It
is possible to consider what is meant by topological entropy, in holography. It is very
important to understand beyond the qualitative argument of dof calculation, what is the
origin of the fundamental c function, its peaks and, whether or not they are related to
the features of the transport coefficients.
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