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Abstract.
In global regression, there is an assumption in the form of an error from a normally
distributed model, so data that is normally distributed is required. But in reality, not all
of the tested data meet the normal distribution. One of the theoretical distributions
of continuous random variables that is often used is the Weibull distribution, where
the Weibull distribution is a distribution that is often used to analyze the reliability of
an object. If there are two response variables that are correlated with each other, the
appropriate method used is Bivariate Weibull Regression (BWR). Spatial data has been
widely used in various research fields. The Geographically Weighted Bivariate Weibull
Regression (GWBWR) model is a model in which there are spatial effects, where there is
spatial heterogeneity in bivariate regression with the response variable being Weibull
distribution. In addition, panel data has also been applied in various cases, where
panel data can provide information covering more than one time period. This can lead
to a temporal effect. This study develops a model that can handle cases of spatial and
temporal heterogeneity simultaneously, namely the Geographically and Temporally
Weighted Bivariate Weibull Regression (GTWBWR) model. The parameter estimation in
the model uses the Maximum Likelihood Estimation (MLE) method which gives results
that are not closed-form, so it is continued with the Berndt-Hall-Hall-Hausman (BHHH)
numerical iteration.

Keywords: parameter estimation, hypothesis testing, GWBWR

1. INTRODUCTION

Weibull distribution was originally used in engineering, then later developed in prob-
ability theory and statistics. In its development, Weibull distribution has attracted the
attention of experts in various fields. Many studies have applied the Weibull distribution
[1]. Like the Exponential and Gamma distribution which aims to analyze reliability, but the
Weibull distribution is more often used because this distribution is famous for its flexible
distribution. Flexibility means that theWeibull distribution can change its distribution into
another distribution, such as it can turn into an exponential distribution if it depends on
changes in the scale and shape parameters [2].
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In linear regression analysis, the relationship between the response variable and
the predictor variable is considered constant for each geographic location, so that
for each location the parameter estimates are the same. Geographically Weighted
Regression (GWR) is a method used to see the relationship between the dependent and
independent variables by considering the location (spatial) element. In the regression
model, it is generally found that there is a significant effect of the independent variable
on the dependent. In the case of GWR, the analysis provides modeling results that
are more precise in assessing the relationship between variables in spatial data. The
purpose of GWR is to estimate parameters in each research area to determine predictor
variables that affect the response variable in each known location [3].

In its development, panel data or temporal data is needed in some cases. This is
because panel data has many advantages over cross section data. The advantages
of panel data when compared to cross section data are that panel data can provide a
larger number of observations, increase degrees of freedom, and reduce collinearity
between predictor variables, thereby increasing efficiency [4]. GWR model that applies
panel data is the Geographically and Temporally Weighted Regression (GTWR) model,
where themodel can overcome spatial heterogeneity and collinearity. Many researchers
have developed the Weibull regression model into Geographically Weighted Univariate
Weibull Regression (GWUWR). There is research that used the GWUWR method which
in their research used the Maximum Likelihood Estimation (MLE) method with spatial
weighting using Adaptive Gaussian and determining the optimum bandwidth using
Generalized Cross Validation (GCV). The test statistic used in this study for simultaneous
testing is the Maximum Likelihood Ratio Test (MLRT) and using Wald for partial testing
[5]. There is also research that uses two responses with a Weibull distribution, where
the resulting model is the Mixed Geographically Weighted Bivariate Weibull Regression
(MGWBWR) model. Parameter estimation using the MLE method did not show closed-
form results, so the Berndt, Hall, Hall, Hausman (BHHH) optimization method was used
[6].

This study develops a model called the Geographically and Temporally Weighted
Bivariate Weibull Regression (GTWBWR) model, where the model can handle the spatial
and temporal heterogeneity through the development of the Bivariate Weibull Regres-
sion (BWR) model with two parameters. The parameter estimation in GTWBWR uses
the MLE method, with BHHH iteration and simultaneous parameter testing using MLRT,
and partial parameter testing using the Z test statistic for the large sample approach.
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2. RESEARCH METHOD

2.1. Bivariate Weibull Regression (BWR)

When BWR is a regression model that has two response variables, namely Y1 and
Y2, where these variables have a bivariate Weibull distribution with several predictor
variables (X). Probability density function on a bivariate Weibull distribution 𝑓(𝑦1, 𝑦2)
obtained from the description of the multivariate Weibull distribution function with the
following results [7]:

𝑓(𝑦1, 𝑦2) = (1𝑎)
2
(𝜎1𝜆1

)(𝜎2𝜆2
)( 𝑦1𝜆1

)
𝜎1
𝑎 −1( 𝑦2𝜆2

)
𝜎2
𝑎 −1

𝑒𝑥𝑝{−((𝑦1𝜆1
)
𝜎1
𝑎 + (𝑦2𝜆2

)
𝜎2
𝑎 )

𝑎
}[−𝑎(𝑎 − 1)(( 𝑦1𝜆1

)
𝜎1
𝑎 + (𝑦2𝜆2

)
𝜎2
𝑎 )

𝑎−2
+ 𝑎2(( 𝑦1

ë1
)
𝜎1
𝑎 + (𝑦2𝜆2

)
𝜎2
𝑎 )

2𝑎−2
] (1)

with the form of the BWR model is:

𝜆𝑘(𝑥) = 𝑒𝑥𝑝𝑒𝑥𝑝 (𝛽𝑇𝑘 𝑥) = 𝑒𝛽𝑇𝑘 𝑥; 𝑘 = 1, 2(2)

where 𝛽𝑘 = [𝛽𝑘0𝛽𝑘1…𝛽𝑘𝑝]𝑇and 𝑥 = [1 𝑥1…𝑥𝑝]𝑇

2.2. Geographically and Temporally Weighted Bivariate Weibull
Regression (GTWBWR)

Spatial and temporal can have an important influence simultaneously on a variable.
The GTWR model is known as the development of the GWR model by adding a time
dimension. In the GTWR model, it is assumed that the coefficients in the regression
have time components and location coordinates [8]. So that the GTWBWR model is a
development of the GWBWR model that has been done previously, by providing a time
dimension to the estimated regression coefficient parameter. The form of the GTWBWR
model equation is:

𝜆𝑘𝑗𝑙 = 𝑒𝑥𝑝𝑒𝑥𝑝 (𝛽𝑇𝑘𝑙(𝑣𝑗)𝑥𝑗𝑙) = 𝑒𝛽𝑇𝑘𝑙(𝑣𝑗 )𝑥𝑗𝑙 ; 𝑘 = 1, 2; 𝑗 = 1, 2,… , 𝑛; 𝑙 = 1, 2,… ,𝐿(3)

Index j shows observations in the j-th location, index l shows the l-th period.𝑥𝑗𝑙is the
observation vector at the j-th location of the l-th period. 𝑣𝑗 = (𝑢𝑗 , 𝑣𝑗 , 𝑡𝑗)is the effect of
spatial and temporal. The spatial effect can be seen from 𝑢𝑗 , 𝑣𝑗which is the coordinates
of the j-th location and the temporal effect can be seen from𝑡𝑗which is the time of
the j-th observation. 𝛽1𝑙(𝑣𝑗)and 𝛽2𝑙(𝑣𝑗)is a regression coefficient parameter vector which
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has spatial and temporal effects. The GTWBWR model which has the joint probability
density function as follows:

𝑓(𝑦1𝑗𝑙, 𝑦2𝑗𝑙) = (
2

∏
𝑘=1

𝐺𝑘𝑗𝑙)𝐵𝑗𝑙𝐴
𝑎𝑙−2
𝑗𝑙 𝑆𝑗𝑙, 𝑗 = 1, 2,… , 𝑛; 𝑙 = 1, 2,… ,𝐿(4)

where,

𝐺𝑘𝑗𝑙 =
𝜎𝑘𝑙
𝑎𝑙
(𝑦𝑘𝑗𝑙)

𝜎𝑘𝑙
𝑎𝑙
−1𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝑘𝑙𝑎𝑙

𝛽𝑇𝑘𝑙(𝑣𝑗)𝑥𝑗𝑙] ; 𝐵𝑗𝑙 = 𝑎𝑙2𝐴
𝑎𝑙
𝑗𝑙 − 𝑎𝑙(𝑎𝑙 − 1)

𝐴𝑗𝑙 =
2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝑘𝑙
𝑎𝑙 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝑘𝑙𝑎𝑙

𝛽𝑇𝑘𝑙(𝑣𝑗)𝑥𝑗𝑙] ; 𝑆𝑗𝑙

= 𝑒𝑥𝑝𝑒𝑥𝑝 [−(
2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝑘𝑙
𝑎𝑙 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝑘𝑙𝑎𝑙

𝛽𝑇𝑘𝑙(𝑣𝑗)𝑥𝑗𝑙] )
𝑎𝑙

]

2.3. Spatial Temporal Weighting

Spatial-temporal regression requires a weighting that distinguishes it from global regres-
sion, where the weighting will vary in each time and location. One of the methods used
to measure the distance between location and time is Euclidean distance, where 𝑑𝑆 is
the spatial distance and 𝑑𝑇 is the temporal distance [8].

𝑑𝑆𝑇 = 𝜍1𝑑𝑆 + 𝜍2𝑑𝑇 (5)

If equation (5) occurs in the l-th period, it can be written:

(𝑑𝑗𝑗∗𝑙)2 = 𝜍1[(𝑢𝑗 − 𝑢𝑗∗)2 + (𝑣𝑗 − 𝑣𝑗∗)2] + 𝜍2(𝑡𝑗 − 𝑡𝑗∗)2(6)

where𝜍1is a balancing scale factor for spatial effects and𝜍2is a scale factor that offsets
the temporal effect. This balancing scale factor is useful so that there is no dominance of
only one effect. Next, suppose𝜂as parameter ratio𝜍2/𝜍1. If it is determined that𝜍1 = 1,then
obtained𝜂 = 𝜍2. The value of 𝜂 can be optimized by cross-validation, so that𝑅2or AIC is
best. So that the Euclidean distance between location and time is used in determining
the spatial-temporal weighting matrix is:

𝑑𝑗𝑗∗𝑙 = √(𝑢𝑗 − 𝑢𝑗∗)2 + (𝑣𝑗 − 𝑣𝑗∗)2 + 𝜂(𝑡𝑗 − 𝑡𝑗∗)2(7)

To form a weighting matrix, it is necessary to define the kernel function first. One of
the kernel functions is the adaptive bisquare kernel function, where this function can
provide different bandwidths for each observation [3]. The function is:

𝑤𝑗𝑗∗𝑙 = [1 − (
𝑑𝑗𝑗∗𝑙
𝑟𝑗𝑙

)
2
]
2

, 𝑖𝑓 𝑑𝑗𝑗∗𝑙 < 𝑟𝑗𝑙

DOI 10.18502/kls.v8i1.15586 Page 242



ICMScE

= 0 , 𝑜𝑡ℎ𝑒𝑟𝑠(8)

𝑑𝑗𝑗∗𝑙is the distance of spatial-temporal, and𝑟𝑗𝑙is bandwidth value at the j-th location
of the l-period One aspect of GTWR is that the estimated parameters depend on the
value of the bandwidth used. So in determining the accuracy of the model, it is very
dependent on choosing the optimum bandwidth. Generalized Cross-Validation (GCV)
is one way that can be used to choose the optimum bandwidth [9].

𝐺𝐶𝑉 =

𝑛𝐿∑𝐿
𝑙=1 ∑

𝑛
𝑗=1 ([𝑦1𝑗𝑙 − ̂𝑦1𝑗𝑙(𝑟1𝑗𝑙)]𝑇 [𝑦1𝑗𝑙 − ̂𝑦1𝑗𝑙(𝑟1𝑗𝑙)] + [𝑦2𝑗𝑙 − ̂𝑦2𝑗𝑙(𝑟2𝑗𝑙)]𝑇 [𝑦2𝑗𝑙 − ̂𝑦2𝑗𝑙(𝑟2𝑗𝑙)])

(𝑛𝐿 − 𝑞1)2
(9)

where𝑞1is the number of parameters in the model. The minimum GCV will get optimum
bandwidth.

2.4. Estimating Parameter and Hypothesis Testing

Parameter estimation in GTWBWR is applied gradually in each period. The first stage
is to perform parameter estimation using the first period of the data. The second stage
performs parameter estimation using the second period of the data and the previous
period, and so on. Up to the L-th stage, the parameter estimation is carried out using
data from the previous period and data from the L-period, where as many as vectors
of parameter estimators will be obtained. For each location and time, the parameter 𝛽1
and 𝛽2 will be estimated, so that for each of these parameters a location coordinate
and time index will be given. Meanwhile, parameter 𝑎, 𝜎1, and 𝜎2will be estimated for
each time period only. MLE is an estimation method used by using an adaptive bisquare
kernel as a weighting function. Furthermore, MLRT is used for simultaneous hypothesis
testing on its parameters.

3. RESULTS AND DISCUSSION

3.1. Parameter Estimation of GTWBWR

Creating the ln-likelihood function from the GTWBWR model in equation (4) is the first
stage to perform parameter estimation.

𝑙𝑛𝑙𝑛 𝑙 (𝛽𝑇1𝐿(𝑣𝑗) 𝛽𝑇2𝐿(𝑣𝑗) 𝑎𝐿 𝜎1𝐿𝜎2𝐿; 𝑗 = 1, 2,… , 𝑛) =
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

((
2

∑
𝑘=1

𝑙𝑛𝑙𝑛 𝐺 𝑘𝑗𝑙)
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+𝑙𝑛𝑙𝑛 𝐵 𝑗𝑙 + (𝑎𝐿 − 2)𝑙𝑛𝑙𝑛 𝐴 𝑗𝑙 + 𝑙𝑛𝑙𝑛 𝑆 𝑗𝑙)(10)

where:

𝐺𝑘𝑗𝑙 =
𝜎𝑘𝐿
𝑎𝐿

(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿

−1𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿
𝛽𝑇𝑘𝐿(𝑣𝑗)𝑥𝑗𝑙] ; 𝐴𝑗𝑙 =

2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿

𝛽𝑇𝑘𝐿(𝑣𝑗)𝑥𝑗𝑙]

𝐵𝑗𝑙 = 𝑎𝐿2𝐴
𝑎𝐿
𝑗𝑙 − 𝑎𝐿(𝑎𝐿 − 1); 𝑆𝑗𝑙 = 𝑒𝑥𝑝𝑒𝑥𝑝 [−(

2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿

𝛽𝑇𝑘𝐿(𝑣𝑗)𝑥𝑗𝑙] )
𝑎𝐿

]

Estimating the location parameter j* at time L requires a function𝑄∗𝐿, where the function
in equation (10) is multiplied by 𝑤𝑗𝑗∗𝑙, as the spatial-temporal weighting, so we get the
following:

𝑄∗𝐿 =
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙(
2

∑
𝑘=1

𝑙𝑛𝑙𝑛 𝐺 ∗𝑘𝑗𝑙 +𝑙𝑛𝑙𝑛 𝐵 ∗𝑗𝑙 +(𝑎𝐿 − 2)𝑙𝑛𝑙𝑛 𝐴 ∗𝑗𝑙 +𝑙𝑛𝑙𝑛 𝑆 ∗𝑗𝑙)(11)

where,

𝐺∗𝑘𝑗𝑙 =
𝜎𝑘𝐿
𝑎𝐿

(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿

−1𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿
𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙] ; 𝐴∗𝑗𝑙

=
2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿

𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙]

𝐵∗𝑗𝑙 = 𝑎𝐿2𝐴
𝑎𝐿
𝑗𝑙 − 𝑎𝐿(𝑎𝐿 − 1); 𝑆∗𝑗𝑙 = 𝑒𝑥𝑝𝑒𝑥𝑝 [−(

2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿

𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙] )
𝑎𝐿

]

Function𝑄∗𝐿divided into four components for ease of calculation, so that:

𝑄∗𝐿 = 𝑞1𝐿 + 𝑞2𝐿 + 𝑞3𝐿 + 𝑞4𝐿

where:

𝑞1𝐿 =
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙

2

∑
𝑘=1

𝑙𝑛𝑙𝑛 𝐺 ∗𝑘𝑗𝑙; 𝑞2𝐿 =
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙(𝑎𝐿 − 2)𝑙𝑛𝑙𝑛 [
2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝

𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿
𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙] ]

𝑞3𝐿 =
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙𝑙𝑛𝑙𝑛 [𝑎𝐿2𝐴
𝑎𝐿
𝑗𝑙 − 𝑎𝐿(𝑎𝐿 − 1)] ; 𝑞4𝐿 = −

𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙(
2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝
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𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿
𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙] )𝑎𝐿

To obtain an estimate of the parameters of the GTWBWR model, it is necessary to
maximize equation (11) by finding the first derivative and then equating it with zero.

𝜕𝑄∗𝐿
𝜕𝛽1𝐿(𝑣𝑗∗)

= 0; 𝜕𝑄∗2
𝜕𝛽2𝐿(𝑣𝑗∗)

= 0; 𝜕𝑄∗𝐿𝜕𝑎𝐿
= 0; 𝜕𝑄∗𝐿𝜕𝜎1𝐿

= 0; 𝜕𝑄∗𝐿𝜕𝜎2𝐿
= 0

The first derivative of the parameters can be seen in Appendix 1.

If the result of the first derivative of equation (11) for each parameter is equalized to
zero, it is found that the parameter estimator is not close form, so optimization is needed
by using numerical iteration BHHH. The following are the steps of the BHHH algorithm
for the GTWBWR model:

1. Initialization𝛾 (0)𝑗∗𝐿and𝑚 = 0with𝜓 > 0 for convergence tolerance

̂𝛾 (0)𝑗∗𝐿 = [ ̂𝛽𝑇1𝐿(0)(𝑣𝑗∗) ̂𝛽𝑇2𝐿(0)(𝑣𝑗∗) ̂𝑎
(0)
𝐿 �̂�(0)1𝐿�̂�

(0)
2𝐿]𝑇

Mark ̂𝑎(0)𝐿 > 0, �̂�(0)1𝐿 > 0, �̂�(0)2𝐿 > 0, whereas ̂𝛽𝑇1𝐿(0)(𝑣𝑗∗) and ̂𝛽𝑇2𝐿(0)(𝑣𝑗∗)is the estimated
Weibull regression coefficient.

1. Make vector 𝑔( ̂𝛾 (𝑚)𝑗∗𝐿) = [ 𝜕𝑙𝑛𝐿()
𝜕𝛽1𝐿(𝑣𝑗∗)

𝜕𝑙𝑛𝐿()
𝜕𝛽2𝐿(𝑣𝑗∗)

𝜕𝑙𝑛𝐿()
𝜕𝑎𝐿

𝜕𝑙𝑛𝐿()
𝜕𝜎1𝐿

𝜕𝑙𝑛𝐿()
𝜕𝜎2𝐿

]𝑇
𝛾 (𝑚)𝑗∗𝐿=𝛾

(𝑚)
𝑗∗𝐿

2. Determine the first derivative of density ln with respect to parameter

𝑙𝑗𝑙( ̂𝛾
(𝑚)
𝑗∗𝐿)

𝑇 = [ 𝜕𝑙𝑛𝑓(𝑦1𝑗𝑙 ,𝑦2𝑗𝑙)𝜕𝛽1𝐿(𝑣𝑗∗)
𝜕𝑙𝑛𝑓(𝑦1𝑗𝑙 ,𝑦2𝑗𝑙)
𝜕𝛽2𝐿(𝑣𝑗∗)

𝜕𝑙𝑛𝑓(𝑦1𝑗𝑙 ,𝑦2𝑗𝑙)
𝜕𝑎𝐿

𝜕𝑙𝑛𝑓(𝑦1𝑗𝑙 ,𝑦2𝑗𝑙)
𝜕𝜎1𝐿

𝜕𝑙𝑛𝑓(𝑦1𝑗𝑙 ,𝑦2𝑗𝑙)
𝜕𝜎2𝐿

]
𝑇

𝛾 (𝑚)𝑗∗𝐿= ̂𝛾 (𝑚)𝑗∗𝐿

, for𝑗 =

1, 2,… , 𝑛

1. Creating a Hessian matrix𝐻( ̂𝛾 (𝑚)𝑗∗𝐿) = −∑𝐿
𝑙=1 ∑

𝑛
𝑗=1 𝑙𝑗𝑙( ̂𝛾

(𝑚)
𝑗∗𝐿)𝑙𝑗𝑙( ̂𝛾

(𝑚)
𝑗 𝑗∗𝐿)

𝑇

2. Substitute value ̂𝛾 (𝑚)𝑗∗𝐿on element𝑔( ̂𝛾 (𝑚)𝑗∗𝐿) 𝑎𝑛𝑑 𝐻( ̂𝛾 (𝑚)𝑗∗𝐿)

3. Perform iterations starting from m = 0 with ̂𝛾 (𝑚+1)𝑗∗𝐿 = ̂𝛾 (𝑚)𝑗∗𝐿 −𝐻−1( ̂𝛾 (𝑚)𝑗∗𝐿)𝑔( ̂𝛾
(𝑚)
𝑗∗𝐿)

The iteration stops if ̂𝛾 (𝑚+1)𝑗∗𝐿 − ̂𝛾 (𝑚)𝑗∗𝐿 < 𝜓 when 𝜓 is a very small positive number

1. Repeat from step 2 with m = m + 1 until it converges

2. Optimization is carried out at n locations for each L. So that the result parameter
estimator is obtained:

̂𝛾𝑗∗𝐿 = [ ̂𝛽1𝐿(𝑣𝑗∗) ̂𝛽2𝐿(𝑣𝑗∗) ̂𝑎𝐿�̂�1𝐿�̂�2𝐿]𝑇 , where 𝐿 = 1, 2,… ,𝐿∗; 𝑗∗ = 1, 2,… , 𝑛
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3.2. Hypothesis Testing of GTWBWR

Similar to parameter estimation, hypothesis testing is also carried out in stages in
each period. The initial stage in testing the hypothesis is to create a hypothesis for
simultaneous testing in period L. The hypotheses formed are:

𝐻0 ∶ 𝛽𝑘1𝐿(𝑣𝑗) = 𝛽𝑘2𝐿(𝑣𝑗) = ⋯ = 𝛽𝑘𝑝𝐿(𝑣𝑗) = 0 ; 𝑗 = 1, 2, ..., 𝑛 ; 𝑘 = 1, 2

𝐻1 ∶ minimum there is one 𝛽𝑘ℎ𝐿(𝑣𝑗) ≠ 0; ℎ = 1, 2,… , 𝑝
where p is the number of predictor variables in the study.

After determining the hypothesis, it is necessary tomaximize the ln-likelihood function
under the population and under𝐻0to obtain test statistics using the MLRT method. To
maximize the function, it is obtained by estimating the parameters using MLE. So first it
is necessary to determine the set of parameters under the population and under𝐻0.

Set of parameters under population:

�𝐿 = {𝛽1𝐿(𝑣𝑗), 𝛽2𝐿(𝑣𝑗), 𝑎𝐿, 𝜎1𝐿, 𝜎2𝐿; 𝑗 = 1, 2, ..., 𝑛}

The set of parameters below:

𝜔𝐿 = {𝛽𝜔1𝐿0(𝑣𝑗), 𝛽𝜔2𝐿0(𝑣𝑗), 𝑎𝜔𝐿, 𝜎𝜔1𝐿, 𝜎𝜔2𝐿; 𝑗 = 1, 2, ..., 𝑛}

The equation (11) is the same as ln-likelihood function under the population, and the
ln-likelihood function under𝐻0is:

𝑙𝑛𝑙𝑛 𝑙 (𝜔𝐿) = 𝑙𝑛𝑙𝑛 𝑙 (𝛽𝜔1𝐿0(𝑣𝑗), 𝛽𝜔2𝐿0(𝑣𝑗), 𝑎𝜔𝐿, 𝜎𝜔1𝐿, 𝜎𝜔2𝐿; 𝑗 = 1, 2, ..., 𝑛) =
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

((
2

∑
𝑘=1

𝑙𝑛𝑙𝑛 𝐹 𝑘𝑗𝑙) + 𝑙𝑛𝑙𝑛 𝐷 𝑗𝑙 + (𝑎𝜔𝐿 − 2)𝑙𝑛𝑙𝑛 𝐶 𝑗𝑙 + 𝑙𝑛𝑙𝑛 𝑇 𝑗𝑙)(12)

where:

𝐹𝑘𝑗𝑙 =
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿

(𝑦𝑘𝑗𝑙)
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿

−1𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿
𝛽𝜔𝑘𝐿0(𝑣𝑗)] ;

𝐶𝑗𝑙 =
2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿

𝛽𝜔𝑘𝐿0(𝑣𝑗)]

𝐷𝑗𝑙 = 𝑎𝜔𝐿2𝐶
𝑎𝜔𝐿
𝑗𝑙 −𝑎𝜔𝐿(𝑎𝜔𝐿−1); 𝑇𝑗𝑙 = 𝑒𝑥𝑝𝑒𝑥𝑝 [−(

2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿

𝛽𝜔𝑘𝐿0(𝑣𝑗)] )
𝑎𝜔𝐿

]
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Next, we need to define the function𝑄∗∗
𝐿 , where the function is a function ln-likelihood

under𝐻0which is weighted spatial-temporal𝑤𝑗𝑗∗𝑙. It is uto get the parameter estimator
below𝐻0at location j* period L.

𝑄∗∗
𝐿 =

𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙(
2

∑
𝑘=1

𝑙𝑛𝑙𝑛 𝐹 ∗𝑘𝑗𝑙 +𝑙𝑛𝑙𝑛 𝐷 ∗𝑗𝑙 +(𝑎𝐿 − 2)𝑙𝑛𝑙𝑛 𝐶 ∗𝑗𝑙 +𝑙𝑛𝑙𝑛 𝑇 ∗𝑗𝑙)(13)

where:

𝐹∗𝑘𝑗𝑙 =
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿

(𝑦𝑘𝑗𝑙)
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿

−1𝑒𝑥𝑝

𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿
𝛽𝜔𝑘𝐿0(𝑣𝑗∗)] ; 𝐶∗𝑗𝑙 =

2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿

𝛽𝜔𝑘𝐿0(𝑣𝑗∗)]

𝐷∗𝑗𝑙 = 𝑎𝜔𝐿2𝐶
𝑎𝜔𝐿
𝑗𝑙 − 𝑎𝜔𝐿(𝑎𝜔𝐿 − 1); 𝑇 ∗𝑗𝑙 = 𝑒𝑥𝑝𝑒𝑥𝑝 [−(

2

∑
𝑘=1

(𝑦𝑘𝑗𝑙)
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿 𝑒𝑥𝑝

𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿
𝛽𝜔𝑘𝐿0(𝑣𝑗∗)] )𝑎𝜔𝐿]

The next step is to create the first derivative of equation (13) for each parameter
below𝐻0then equated to zero. Function𝑄∗∗

𝐿 divided into 4 components, so that:

𝑄∗∗
𝐿 = 𝑞 ∗1𝐿 +𝑞 ∗2𝐿 +𝑞 ∗3𝐿 +𝑞∗4𝐿

where:

𝑞∗1𝐿 =
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙

2

∑
𝑘=1

𝑙𝑛𝑙𝑛 𝐹 ∗𝑘𝑗𝑙; 𝑞∗2𝐿 =
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙(𝑎𝜔𝐿 − 2)𝑙𝑛𝑙𝑛 [𝐶∗𝑗𝑙]

𝑞∗3𝐿 =
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙𝑙𝑛𝑙𝑛 [𝑎𝜔𝐿2(𝐶∗𝑗𝑙)𝑎𝜔𝐿 − 𝑎𝜔𝐿(𝑎𝜔𝐿 − 1)] ; 𝑞∗4𝐿 = −
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙(𝐶∗𝑗𝑙)𝑎𝜔𝐿

The derivative of the function 𝑄∗∗
𝐿 against the parameters can be seen in Appendix 2.

If the first derivative of the function𝑄∗∗
𝐿 to each of the parameters below𝐻0equated

with zero results in a parameter estimator that is not closed-form, so optimization is
needed by using numerical iteration with BHHH method, which has been described
previously so that the parameter estimator vector below is obtained:𝐻0

̂𝛾𝜔𝑗∗𝐿 = [ ̂𝛽𝜔1𝐿0(𝑣𝑗∗) ̂𝛽𝜔2𝐿0(𝑣𝑗∗) ̂𝑎𝜔𝐿 �̂�𝜔1𝐿 �̂�𝜔1𝐿 ]
𝑇 , where j∗=1,2,…,n

To facilitate decision making, the following test statistics are used:

𝐺2
𝐿 = −𝑙𝑛𝑙𝑛 �2𝐿 = −𝑙𝑛𝑙𝑛 (𝐿(�̂�𝐿)

𝐿(�̂𝐿)
)
2
= 2[𝑙𝑛𝑙𝑛 𝐿 (�̂𝐿) − 𝑙𝑛𝑙𝑛 𝐿 (�̂�𝐿)]∼𝑛𝐿→∞ 𝜒2

(𝛼,2𝑛𝑝𝐿)(14)
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𝐿(�̂𝐿) is the likelihood function with the parameter estimator under the popula-
tion and𝐿(�̂�𝐿) is the likelihood function with the parameter estimator below 𝐻0.
Statistics𝐺2

𝐿can be approximated by a chi-square distribution with 2npL degrees
of freedom if the sample size is large, where 2npL is the difference between the
parameters under𝐻0and the parameters under the population. Area of rejection𝐻0that
is𝐺2

𝐿 > 𝜒2
(𝛼;2𝑛𝑝𝐿) [10]. If the results are rejected 𝐻0 in the form of simultaneous testing, it

is necessary to do partial testing. The partial test has the hypothesis as follows:

𝐻0 ∶ 𝛽𝑘ℎ𝐿(𝑣𝑗) = 0𝐻1 ∶ 𝛽𝑘ℎ𝐿(𝑣𝑗) ≠ 0

where k = 1,2; h = 1,2,…,p; L = 1,2,…,L*

The test statistics used are:

𝑍 =
̂𝛽𝑘ℎ𝐿(𝑣𝑗)

𝑠𝑒( ̂𝛽𝑘ℎ𝐿(𝑣𝑗))
∼𝑛𝐿→∞𝑁(0, 1)(15)

with𝑠𝑒( ̂𝛽𝑘ℎ𝐿(𝑣𝑗)) = √𝑣 ̂𝑎𝑟( ̂𝛽𝑘ℎ𝐿(𝑣𝑗)),for𝑣 ̂𝑎𝑟( ̂𝛽𝑘ℎ𝐿(𝑣𝑗))obtained from the k+1 diagonal of the
matrix𝑣 ̂𝑎𝑟( ̂𝛾𝑗∗𝐿) = −𝐻−1( ̂𝛾𝑗∗𝐿).

The Z statistic will approach the standard normal distribution if the sample size is
large, so the rejection region𝐻0is 𝑍 > 𝑍𝛼/2 [11].

4. CONCLUSION

The estimation of parameter in the GTWBWRmodel using the MLE method produces an
estimator that is not closed-form, so optimization is needed by using numerical iterations
of BHHH at each time period. To test the hypothesis simultaneously using the MLRT
method with the G2 test statistic with a chi-square distribution and the partial test using
the Z test statistic which is normally distributed.
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APPENDIX 1.

Derivative𝑄∗𝐿against parameter𝛽𝑘𝐿(𝑣𝑗∗):
𝜕𝑄∗𝐿

𝜕𝛽𝑘𝐿(𝑣𝑗∗)
= 𝜕𝑞1𝐿
𝜕𝛽𝑘𝐿(𝑣𝑗∗)

+ 𝜕𝑞2𝐿
𝜕𝛽𝑘𝐿(𝑣𝑗∗)

+ 𝜕𝑞3𝐿
𝜕𝛽𝑘𝐿(𝑣𝑗∗)

+ 𝜕𝑞4𝐿
𝜕𝛽𝑘𝐿(𝑣𝑗∗)

where:

𝜕𝑞1𝐿
𝜕𝛽𝑘𝐿(𝑣𝑗∗)

=
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

(−𝜎𝑘𝐿𝑎𝐿
𝑤𝑗𝑗∗𝑙𝑥𝑗𝑙)
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𝜕𝑞2𝐿
𝜕𝛽𝑘𝐿(𝑣𝑗∗)

=
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙(𝑎𝐿 − 2)
−𝜎𝑘𝐿𝑥𝑗𝑙
𝑎𝐿

𝐴∗𝑗𝑙−1(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝

𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿
𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙]

𝜕𝑞4𝐿
𝜕𝛽𝑘𝐿(𝑣𝑗∗)

=
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙𝐴∗𝑗𝑙𝑎𝐿−1𝜎𝑘𝐿𝑥𝑗𝑙(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿

𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙]

Derivative𝑄∗𝐿against parameter𝑎𝐿
𝜕𝑄∗𝐿
𝜕𝑎𝐿

= 𝜕𝑞1𝐿
𝜕𝑎𝐿

+ 𝜕𝑞2𝐿
𝜕𝑎𝐿

+ 𝜕𝑞3𝐿
𝜕𝑎𝐿

+ 𝜕𝑞4𝐿
𝜕𝑎𝐿

where:

𝜕𝑞2𝐿
𝜕𝑎𝐿

=
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙[𝑙𝑛𝑙𝑛 𝐴 ∗𝑗𝑙 +(𝑎𝐿 − 2)
𝐴∗𝑗𝑙−1

𝑎𝐿2
2

∑
𝑘=1

𝜎𝑘𝐿(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝

𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿
𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑖𝑙] (𝛽𝑘𝐿𝑇 (𝑣𝑗∗)𝑥𝑗𝑙 − 𝑙𝑛𝑙𝑛 𝑦 𝑘𝑗𝑙)]

𝜕𝑞4𝐿
𝜕𝑎𝐿

= −
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙𝐴∗𝑗𝑙𝑎𝐿[𝑙𝑛𝑙𝑛 𝐴 ∗𝑗𝑙 +
𝐴∗𝑗𝑙−1

𝑎𝐿

2

∑
𝑘=1

𝜎𝑘𝐿(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝

𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿
𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙] (𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙 − 𝑙𝑛𝑙𝑛 𝑦 𝑘𝑗𝑙)]

Derivative𝑄∗𝐿against parameter𝜎𝑘𝐿:

𝜕𝑄∗𝐿
𝜕𝜎𝑘𝐿

= 𝜕𝑞1𝐿
𝜕𝜎𝑘𝐿

+ 𝜕𝑞2𝐿
𝜕𝜎𝑘𝐿

+ 𝜕𝑞3𝐿
𝜕𝜎𝑘𝐿

+ 𝜕𝑞4𝐿
𝜕𝜎𝑘𝐿

where:

𝜕𝑞2𝐿
𝜕𝜎𝑘𝐿

=
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙(𝑎𝐿 − 2)
𝐴∗𝑗𝑙−1

𝑎𝐿
(𝑦𝑘𝑗𝑙)

𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝
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𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿
𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙] (𝑙𝑛𝑙𝑛 𝑦 𝑘𝑗𝑙 − 𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙)

𝜕𝑞4𝐿
𝜕𝜎𝑘𝐿

= −
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙𝐴∗𝑗𝑙𝑎𝐿−1(𝑦𝑘𝑗𝑙)
𝜎𝑘𝐿
𝑎𝐿 𝑒𝑥𝑝

𝑒𝑥𝑝 [−𝜎𝑘𝐿𝑎𝐿
𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑖𝑙] (𝑙𝑛𝑙𝑛 𝑦 𝑘𝑗𝑙 − 𝛽𝑇𝑘𝐿(𝑣𝑗∗)𝑥𝑗𝑙)

APPENDIX 2.

𝑄∗∗
𝐿 against parameter𝛽𝜔𝑘𝐿0(𝑣𝑗∗):

𝜕𝑄∗∗
𝐿

𝜕𝛽𝜔𝑘𝐿0(𝑣𝑗∗)
= 𝜕𝑞∗1𝐿
𝜕𝛽𝜔𝑘𝐿0(𝑣𝑗∗)

+ 𝜕𝑞∗2𝐿
𝜕𝛽𝜔𝑘𝐿0(𝑣𝑗∗)

+ 𝜕𝑞∗3𝐿
𝜕𝛽𝜔𝑘𝐿0(𝑣𝑗∗)

+ 𝜕𝑞∗4𝐿
𝜕𝛽𝜔𝑘𝐿0(𝑣𝑗∗)

where:

𝜕𝑞∗1𝐿
𝜕𝛽𝜔𝑘𝐿0(𝑣𝑗∗)

=
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

(−𝜎𝑘𝐿𝑎𝐿
𝑤𝑗𝑗∗𝑙)

𝜕𝑞∗2𝐿
𝜕𝛽𝜔𝑘𝐿0(𝑣𝑗∗)

=
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙(𝑎𝜔𝐿 − 2)−𝜎𝜔𝑘𝐿𝑎𝜔𝐿
𝐶∗𝑗𝑙−1(𝑦𝑘𝑗𝑙)

𝜎𝜔𝑘𝐿
𝑎𝜔𝐿 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿

𝛽𝜔𝑘𝐿0(𝑣𝑗∗)]

𝜕𝑞∗4𝐿
𝜕𝛽𝜔𝑘𝐿0(𝑣𝑗∗)

=
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙𝐶∗𝑗𝑙𝑎𝜔𝐿−1𝜎𝜔𝑘𝐿(𝑦𝑘𝑗𝑙)
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿 𝑒𝑥𝑝𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿

𝛽𝜔𝑘𝐿0(𝑣𝑗∗)]

Derivative𝑄∗∗
𝐿 against parameter𝑎𝜔𝐿:

𝜕𝑄∗∗
𝐿

𝜕𝑎𝜔𝐿
= 𝜕𝑞∗1𝐿

𝜕𝑎𝜔𝐿
+ 𝜕𝑞∗2𝐿

𝜕𝑎𝜔𝐿
+ 𝜕𝑞∗3𝐿

𝜕𝑎𝜔𝐿
+ 𝜕𝑞∗4𝐿

𝜕𝑎𝜔𝐿
where:

𝜕𝑞∗2𝐿
𝜕𝑎𝜔𝐿

=
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙[𝑙𝑛𝑙𝑛 𝐶 ∗𝑗𝑙 +(𝑎𝜔𝐿 − 2)
𝐶∗𝑗𝑙−1

𝑎𝜔𝐿2
2

∑
𝑘=1

𝜎𝜔𝑘𝐿(𝑦𝑘𝑗𝑙)
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿 𝑒𝑥𝑝
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𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿
𝛽𝜔𝑘𝐿0(𝑣𝑗∗)] (𝛽𝜔𝑘𝐿0(𝑣𝑗∗) − 𝑙𝑛𝑙𝑛 𝑦 𝑘𝑗𝑙)]

𝜕𝑞∗4𝐿
𝜕𝑎𝜔𝐿

= −
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙𝐶∗𝑗𝑙𝑎𝜔𝐿[𝑙𝑛𝑙𝑛 𝐶 ∗𝑗𝑙 +
𝐶∗𝑗𝑙−1

𝑎𝜔𝐿

2

∑
𝑘=1

𝜎𝜔𝑘𝐿(𝑦𝑘𝑗𝑙)
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿 𝑒𝑥𝑝

𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿
𝛽𝜔𝑘𝐿0(𝑣𝑗∗)] (𝛽𝜔𝑘𝐿0(𝑣𝑗∗) − 𝑙𝑛𝑙𝑛 𝑦 𝑘𝑗𝑙)]

Derivative𝑄∗∗
𝐿 against parameter 𝜎𝜔𝑘𝐿:

𝜕𝑄∗∗
𝐿

𝜕𝜎𝜔𝑘𝐿
= 𝜕𝑞∗1𝐿
𝜕𝜎𝜔𝑘𝐿

+ 𝜕𝑞∗2𝐿
𝜕𝜎𝜔𝑘𝐿

+ 𝜕𝑞∗3𝐿
𝜕𝜎𝜔𝑘𝐿

+ 𝜕𝑞∗4𝐿
𝜕𝜎𝜔𝑘𝐿

where:

𝜕𝑞∗2𝐿
𝜕𝜎𝜔𝑘𝐿

=
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙(𝑎𝜔𝐿 − 2)
𝐶∗𝑗𝑙−1

𝑎𝜔𝐿
(𝑦𝑘𝑗𝑙)

𝜎𝜔𝑘𝐿
𝑎𝜔𝐿 𝑒𝑥𝑝

𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿
𝛽𝜔𝑘𝐿0(𝑣𝑗∗)] (𝑙𝑛𝑙𝑛 𝑦 𝑘𝑗𝑙 − 𝛽𝜔𝑘𝐿0(𝑣𝑗∗))

𝜕𝑞∗4𝐿
𝜕𝜎𝜔𝑘𝐿

= −
𝐿

∑
𝑙=1

𝑛

∑
𝑗=1

𝑤𝑗𝑗∗𝑙𝐶∗𝑗𝑙𝑎𝜔𝐿−1(𝑦𝑘𝑗𝑙)
𝜎𝜔𝑘𝐿
𝑎𝜔𝐿 𝑒𝑥𝑝

𝑒𝑥𝑝 [−𝜎𝜔𝑘𝐿𝑎𝜔𝐿
𝛽𝜔𝑘𝐿0(𝑣𝑗∗)] (𝑙𝑛𝑙𝑛 𝑦 𝑘𝑗𝑙 − 𝛽𝜔𝑘𝐿0(𝑣𝑗∗))
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