Research Article

Parameter Estimation and Hypothesis Testing of Geographically and Temporally Weighted Bivariate Weibull Regression

Muhammad Eka Prasetya, Purhadi*, and Sutikno

Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Arief Rahman Hakim Street, Sukolilo Surabaya 60111 Indonesia

ORCID
Purhadi: https://orcid/0000-0002-1186-2664

Abstract.
In global regression, there is an assumption in the form of an error from a normally distributed model, so data that is normally distributed is required. But in reality, not all of the tested data meet the normal distribution. One of the theoretical distributions of continuous random variables that is often used is the Weibull distribution, where the Weibull distribution is a distribution that is often used to analyze the reliability of an object. If there are two response variables that are correlated with each other, the appropriate method used is Bivariate Weibull Regression (BWR). Spatial data has been widely used in various research fields. The Geographically Weighted Bivariate Weibull Regression (GWBWR) model is a model in which there are spatial effects, where there is spatial heterogeneity in bivariate regression with the response variable being Weibull distribution. In addition, panel data has also been applied in various cases, where panel data can provide information covering more than one time period. This can lead to a temporal effect. This study develops a model that can handle cases of spatial and temporal heterogeneity simultaneously, namely the Geographically and Temporally Weighted Bivariate Weibull Regression (GTWBWR) model. The parameter estimation in the model uses the Maximum Likelihood Estimation (MLE) method which gives results that are not closed-form, so it is continued with the Berndt-Hall-Hall-Hausman (BHHH) numerical iteration.

Keywords: parameter estimation, hypothesis testing, GWBWR

1. INTRODUCTION

Weibull distribution was originally used in engineering, then later developed in probability theory and statistics. In its development, Weibull distribution has attracted the attention of experts in various fields. Many studies have applied the Weibull distribution [1]. Like the Exponential and Gamma distribution which aims to analyze reliability, but the Weibull distribution is more often used because this distribution is famous for its flexible distribution. Flexibility means that the Weibull distribution can change its distribution into another distribution, such as it can turn into an exponential distribution if it depends on changes in the scale and shape parameters [2].

How to cite this article: Muhammad Eka Prasetya, Purhadi*, and Sutikno, (2024), "Parameter Estimation and Hypothesis Testing of Geographically and Temporally Weighted Bivariate Weibull Regression" in International Conference On Mathematics And Science Education, KnE Life Sciences, pages 239–252. DOI 10.18502/kls.v8i1.15586
In linear regression analysis, the relationship between the response variable and the predictor variable is considered constant for each geographic location, so that for each location the parameter estimates are the same. Geographically Weighted Regression (GWR) is a method used to see the relationship between the dependent and independent variables by considering the location (spatial) element. In the regression model, it is generally found that there is a significant effect of the independent variable on the dependent. In the case of GWR, the analysis provides modeling results that are more precise in assessing the relationship between variables in spatial data. The purpose of GWR is to estimate parameters in each research area to determine predictor variables that affect the response variable in each known location [3].

In its development, panel data or temporal data is needed in some cases. This is because panel data has many advantages over cross section data. The advantages of panel data when compared to cross section data are that panel data can provide a larger number of observations, increase degrees of freedom, and reduce collinearity between predictor variables, thereby increasing efficiency [4]. GWR model that applies panel data is the Geographically and Temporally Weighted Regression (GTWR) model, where the model can overcome spatial heterogeneity and collinearity. Many researchers have developed the Weibull regression model into Geographically Weighted Univariate Weibull Regression (GWUWR). There is research that used the GWUWR method which in their research used the Maximum Likelihood Estimation (MLE) method with spatial weighting using Adaptive Gaussian and determining the optimum bandwidth using Generalized Cross Validation (GCV). The test statistic used in this study for simultaneous testing is the Maximum Likelihood Ratio Test (MLRT) and using Wald for partial testing [5]. There is also research that uses two responses with a Weibull distribution, where the resulting model is the Mixed Geographically Weighted Bivariate Weibull Regression (MGWBWR) model. Parameter estimation using the MLE method did not show closed-form results, so the Berndt, Hall, Hall, Hausman (BHHH) optimization method was used [6].

This study develops a model called the Geographically and Temporally Weighted Bivariate Weibull Regression (GTWBWR) model, where the model can handle the spatial and temporal heterogeneity through the development of the Bivariate Weibull Regression (BWR) model with two parameters. The parameter estimation in GTWBWR uses the MLE method, with BHHH iteration and simultaneous parameter testing using MLRT, and partial parameter testing using the Z test statistic for the large sample approach.
2. RESEARCH METHOD

2.1. Bivariate Weibull Regression (BWR)

When BWR is a regression model that has two response variables, namely \(Y_1\) and \(Y_2\), where these variables have a bivariate Weibull distribution with several predictor variables (X). Probability density function on a bivariate Weibull distribution \(f(y_1, y_2)\) obtained from the description of the multivariate Weibull distribution function with the following results [7]:

\[
\begin{align*}
 f(y_1, y_2) &= \left(\frac{1}{a}\right)^2 \frac{\sigma_1}{\lambda_1} \left(\frac{y_1}{\lambda_1}\right)^{\frac{a-1}{a}} \left(\frac{y_2}{\lambda_2}\right)^{\frac{a-1}{a}} \\
 & \quad \times \exp\left\{-\left[\left(\frac{y_1}{\lambda_1}\right)^a + \left(\frac{y_2}{\lambda_2}\right)^a\right] \right\} \\
& \quad \times \exp\{-a(a-1)((\frac{y_1}{\lambda_1})^a + (\frac{y_2}{\lambda_2})^a)\}^{\frac{2a-2}{2}} + a^2((\frac{y_1}{\lambda_1})^a + (\frac{y_2}{\lambda_2})^a)^{2a-2}\}
\end{align*}
\]

with the form of the BWR model is:

\[
\lambda_k(x) = \exp \exp (\beta_k^T x) = e^{\beta_k^T x}; k = 1, 2
\]

where \(\beta_k = [\beta_{k0}, \beta_{k1}, \ldots, \beta_{kp}]^T\) and \(x = [1, x_1, \ldots, x_p]^T\)

2.2. Geographically and Temporally Weighted Bivariate Weibull Regression (GTWBWR)

Spatial and temporal can have an important influence simultaneously on a variable. The GTWR model is known as the development of the GWR model by adding a time dimension. In the GTWR model, it is assumed that the coefficients in the regression have time components and location coordinates [8]. So that the GTWBWR model is a development of the GWBWR model that has been done previously, by providing a time dimension to the estimated regression coefficient parameter. The form of the GTWBWR model equation is:

\[
\lambda_{kjl} = \exp \exp (\beta^T_{k}(v_j)x_{jl}); k = 1, 2; j = 1, 2, \ldots, n; l = 1, 2, \ldots, L
\]

Index \(j\) shows observations in the \(j\)-th location, index \(l\) shows the \(l\)-th period. \(x_{jl}\) is the observation vector at the \(j\)-th location of the \(l\)-th period. \(v_j = (u_j, v_j, t_j)\) is the effect of spatial and temporal. The spatial effect can be seen from \(u_j, v_j\) which is the coordinates of the \(j\)-th location and the temporal effect can be seen from \(t_j\) which is the time of the \(j\)-th observation. \(\beta_{k1}(v_j)\) and \(\beta_{k2}(v_j)\) is a regression coefficient parameter vector which
has spatial and temporal effects. The GTWBWR model which has the joint probability density function as follows:

\[
f(y_{1j}, y_{2j}) = \prod_{k=1}^{2} G_{kjl}^{\frac{\sigma_{kl}}{a_{l}}} \exp \left(\frac{\sigma_{kl}^{2}}{a_{l}} \beta_{kjl}^{T}(v_{j})x_{jl} \right) ; \quad B_{jl} = a_{l}^{2}A_{jl} - a_{l}(a_{l} - 1)
\]

where,

\[
G_{kjl} = \frac{\sigma_{kl}}{a_{l}} (y_{kjl})^{-\frac{\sigma_{kl}}{a_{l}}} \exp \left(\frac{\sigma_{kl}^{2}}{a_{l}} \beta_{kjl}^{T}(v_{j})x_{jl} \right) ; \quad B_{jl} = a_{l}^{2}A_{jl} - a_{l}(a_{l} - 1)
\]

\[
A_{jl} = \sum_{k=1}^{2} (y_{kjl})^{-\frac{\sigma_{kl}}{a_{l}}} \exp \left(\frac{\sigma_{kl}^{2}}{a_{l}} \beta_{kjl}^{T}(v_{j})x_{jl} \right) ; \quad S_{jl} = \exp \left(\frac{\sum_{k=1}^{2} (y_{kjl})^{-\frac{\sigma_{kl}}{a_{l}}} \exp \left(\frac{\sigma_{kl}^{2}}{a_{l}} \beta_{kjl}^{T}(v_{j})x_{jl} \right) }{a_{l}} \right)
\]

2.3. Spatial Temporal Weighting

Spatial-temporal regression requires a weighting that distinguishes it from global regression, where the weighting will vary in each time and location. One of the methods used to measure the distance between location and time is Euclidean distance, where \(d^S\) is the spatial distance and \(d^T\) is the temporal distance [8].

\[
d^{ST} = \zeta_{1}d^{S} + \zeta_{2}d^{T} (5)
\]

If equation (5) occurs in the \(l\)-th period, it can be written:

\[
(d_{j*jl})^{2} = \zeta_{1}[(u_{j} - u_{j*})^{2} + (v_{j} - v_{j*})^{2}] + \zeta_{2}(t_{j} - t_{j*})^{2} (6)
\]

where \(\zeta_{1}\) is a balancing scale factor for spatial effects and \(\zeta_{2}\) is a scale factor that offsets the temporal effect. This balancing scale factor is useful so that there is no dominance of only one effect. Next, suppose \(\eta\) as parameter ratio \(\zeta_{2}/\zeta_{1}\). If it is determined that \(\zeta_{1} = 1\), then obtained \(\eta = \zeta_{2}\). The value of \(\eta\) can be optimized by cross-validation, so that \(R^2\) or AIC is best. So that the Euclidean distance between location and time is used in determining the spatial-temporal weighting matrix is:

\[
d_{j*jl} = \sqrt{(u_{j} - u_{j*})^{2} + (v_{j} - v_{j*})^{2} + \eta(t_{j} - t_{j*})^{2}} (7)
\]

To form a weighting matrix, it is necessary to define the kernel function first. One of the kernel functions is the adaptive bisquare kernel function, where this function can provide different bandwidths for each observation [3]. The function is:

\[
w_{j*jl} = \left[1 - \left(\frac{d_{j*jl}}{r_{jl}}\right)^{2}\right]^{2} , \quad \text{if} \quad d_{j*jl} < r_{jl}
\]
\[d_{jj*} \text{ is the distance of spatial-temporal, and } r_j \text{ is bandwidth value at the } j \text{-th location of the } l\text{-period} \]

One aspect of GTWR is that the estimated parameters depend on the value of the bandwidth used. So in determining the accuracy of the model, it is very dependent on choosing the optimum bandwidth. Generalized Cross-Validation (GCV) is one way that can be used to choose the optimum bandwidth [9].

\[
GCV = \frac{nL \sum_{l=1}^{L} \sum_{j=1}^{n} ([y_{1jl} - \hat{y}_{1jl}(r_{1jl})]^T [y_{1jl} - \hat{y}_{1jl}(r_{1jl})] + [y_{2jl} - \hat{y}_{2jl}(r_{2jl})]^T [y_{2jl} - \hat{y}_{2jl}(r_{2jl})])}{(nL - q_1)^2}
\]

where \(q_1 \) is the number of parameters in the model. The minimum GCV will get optimum bandwidth.

2.4. Estimating Parameter and Hypothesis Testing

Parameter estimation in GTWBWR is applied gradually in each period. The first stage is to perform parameter estimation using the first period of the data. The second stage performs parameter estimation using the second period of the data and the previous period, and so on. Up to the \(L \)-th stage, the parameter estimation is carried out using data from the previous period and data from the \(L\)-period, where as many as vectors of parameter estimators will be obtained. For each location and time, the parameter \(\beta_1 \) and \(\beta_2 \) will be estimated, so that for each of these parameters a location coordinate and time index will be given. Meanwhile, parameter \(a, \sigma_1, \) and \(\sigma_2 \) will be estimated for each time period only. MLE is an estimation method used by using an adaptive bisquare kernel as a weighting function. Furthermore, MLRT is used for simultaneous hypothesis testing on its parameters.

3. RESULTS AND DISCUSSION

3.1. Parameter Estimation of GTWBWR

Creating the ln-likelihood function from the GTWBWR model in equation (4) is the first stage to perform parameter estimation.

\[
\ln l (\beta_{1L}^T(v_j), \beta_{2L}^T(v_j), a_L, \sigma_{1L}, \sigma_{2L}; j = 1, 2, \ldots, n) = \sum_{l=1}^{L} \sum_{j=1}^{n} \left(\sum_{k=1}^{2} \ln l G_{kjl} \right)
\]
\[+\ln \ln B_{jl} + (a_L - 2)\ln \ln A_{jl} + \ln \ln S_{jl} \] (10)

where:

\[G_{kjl} = \frac{\sigma_{kl}}{a_L} (y_{kjl})^{\frac{a_l}{\sigma_{kl}}} \exp \left[-\frac{\sigma_{kl}}{a_L} \beta_{kl}^T(v_j) \right] \]

\[A_{jl} = \sum_{k=1}^{2} (y_{kjl})^{\frac{a_l}{\sigma_{kl}}} \exp \left[-\frac{\sigma_{kl}}{a_L} \beta_{kl}^T(v_j) \right] \]

\[B_{jl} = a_L^2 A_{jl}^a - a_L(a_L - 1); S_{jl} = \exp \left[-\left(\sum_{k=1}^{2} (y_{kjl})^{\frac{a_l}{\sigma_{kl}}} \exp \left[-\frac{\sigma_{kl}}{a_L} \beta_{kl}^T(v_j) \right] \right) \right] \]

Estimating the location parameter \(j^* \) at time \(L \) requires a function \(Q^* \), where the function in equation (10) is multiplied by \(w_{j*jl} \), as the spatial-temporal weighting, so we get the following:

\[Q^* = \sum_{j=1}^{n} w_{j*jl} \left(\sum_{k=1}^{2} \ln \ln G_{kjl} + \ln \ln B_{jl} + (a_L - 2)\ln \ln A_{jl} + \ln \ln S_{jl} \right) \] (11)

where,

\[G^*_{kjl} = \frac{\sigma_{kl}}{a_L} (y_{kjl})^{\frac{a_l}{\sigma_{kl}}} \exp \left[-\frac{\sigma_{kl}}{a_L} \beta_{kl}^T(v_j) \right] \]

\[A^*_{jl} = \sum_{k=1}^{2} (y_{kjl})^{\frac{a_l}{\sigma_{kl}}} \exp \left[-\frac{\sigma_{kl}}{a_L} \beta_{kl}^T(v_j) \right] \]

\[B^*_{jl} = a_L^2 A_{jl}^a - a_L(a_L - 1); S^*_{jl} = \exp \left[-\left(\sum_{k=1}^{2} (y_{kjl})^{\frac{a_l}{\sigma_{kl}}} \exp \left[-\frac{\sigma_{kl}}{a_L} \beta_{kl}^T(v_j) \right] \right) \right] \]

Function \(Q^*_L \) divided into four components for ease of calculation, so that:

\[Q^*_L = q_{1L} + q_{2L} + q_{3L} + q_{4L} \]

where:

\[q_{1L} = \sum_{j=1}^{n} w_{j*jl} \left(\sum_{k=1}^{2} \ln \ln G_{kjl} \right) \]

\[q_{2L} = \sum_{j=1}^{n} w_{j*jl} (a_L - 2)\ln \ln \left(\sum_{k=1}^{2} (y_{kjl})^{\frac{a_l}{\sigma_{kl}}} \exp \left[-\frac{\sigma_{kl}}{a_L} \beta_{kl}^T(v_j) \right] \right) \]

\[q_{3L} = \sum_{j=1}^{n} w_{j*jl} \ln \left(a_L^2 A_{jl}^a - a_L(a_L - 1) \right) \]

\[q_{4L} = -\sum_{j=1}^{n} w_{j*jl} \left(\sum_{k=1}^{2} (y_{kjl})^{\frac{a_l}{\sigma_{kl}}} \exp \left[-\frac{\sigma_{kl}}{a_L} \beta_{kl}^T(v_j) \right] \right) \]
To obtain an estimate of the parameters of the GTWBWR model, it is necessary to maximize equation (11) by finding the first derivative and then equating it with zero:

\[
\frac{\partial Q^*_{L}}{\partial \beta^T_{1L}(v_{j*})} = 0; \frac{\partial Q^*_{L}}{\partial \beta^T_{2L}(v_{j*})} = 0; \frac{\partial Q^*_{L}}{\partial a_L} = 0; \frac{\partial Q^*_{L}}{\partial \sigma_{1L}} = 0; \frac{\partial Q^*_{L}}{\partial \sigma_{2L}} = 0
\]

The first derivative of the parameters can be seen in Appendix 1.

If the result of the first derivative of equation (11) for each parameter is equalized to zero, it is found that the parameter estimator is not close form, so optimization is needed by using numerical iteration BHHH. The following are the steps of the BHHH algorithm for the GTWBWR model:

1. Initialization \(\gamma^{(0)}_{j*L} \) and \(m = 0 \) with \(\psi > 0 \) for convergence tolerance

\[
\hat{\gamma}^{(0)}_{j*L} = \left[\hat{\beta}^T_{1L}(v_{j*}) \hat{\beta}^T_{2L}(v_{j*}) \hat{a}_L \hat{\sigma}_{1L} \hat{\sigma}_{2L} \right]^T
\]

Mark \(\hat{a}^{(0)}_L > 0, \hat{\sigma}^{(0)}_{1L} > 0, \hat{\sigma}^{(0)}_{2L} > 0 \), whereas \(\hat{\beta}^T_{1L}(v_{j*}) \) and \(\hat{\beta}^T_{2L}(v_{j*}) \) is the estimated Weibull regression coefficient.

1. Make vector \(g^{(m)}_{j*} = \left[\frac{\partial \ln f(y_{1j},y_{2j})}{\partial \beta^T_{1L}(v_{j*})} \frac{\partial \ln f(y_{1j},y_{2j})}{\partial \beta^T_{2L}(v_{j*})} \frac{\partial \ln f(y_{1j},y_{2j})}{\partial a_L} \frac{\partial \ln f(y_{1j},y_{2j})}{\partial \sigma_{1L}} \frac{\partial \ln f(y_{1j},y_{2j})}{\partial \sigma_{2L}} \right]^T_{\gamma^{(m)}_{j*L} = \gamma^{(m)}_{j*L}} \), for \(j = 1, 2, \ldots, n \)

2. Determine the first derivative of density ln with respect to parameter

\[
l_{jL}(\hat{\gamma}^{(m)}_{j*L})^T = \left[\frac{\partial \ln f(y_{1j},y_{2j})}{\partial \beta^T_{1L}(v_{j*})} \frac{\partial \ln f(y_{1j},y_{2j})}{\partial \beta^T_{2L}(v_{j*})} \frac{\partial \ln f(y_{1j},y_{2j})}{\partial a_L} \frac{\partial \ln f(y_{1j},y_{2j})}{\partial \sigma_{1L}} \frac{\partial \ln f(y_{1j},y_{2j})}{\partial \sigma_{2L}} \right]^T_{\gamma^{(m)}_{j*L} = \gamma^{(m)}_{j*L}}
\]

1. Creating a Hessian matrix \(H(\hat{\gamma}^{(m)}_{j*L}) = -\sum_{l=1}^{L} \sum_{j=1}^{n} l_{jL}(\hat{\gamma}^{(m)}_{j*L})l_{jL}(\hat{\gamma}^{(m)}_{j*L})^T \)
2. Substitute value \(\hat{\gamma}^{(m)}_{j*L} \) on element \(g(\hat{\gamma}^{(m)}_{j*L}) \) and \(H(\hat{\gamma}^{(m)}_{j*L}) \)
3. Perform iterations starting from \(m = 0 \) with \(\hat{\gamma}^{(m+1)}_{j*L} = \hat{\gamma}^{(m)}_{j*L} - H^{-1}(\hat{\gamma}^{(m)}_{j*L})g(\hat{\gamma}^{(m)}_{j*L}) \)

The iteration stops if \(\hat{\gamma}^{(m+1)}_{j*L} - \hat{\gamma}^{(m)}_{j*L} < \psi \) when \(\psi \) is a very small positive number

1. Repeat from step 2 with \(m = m + 1 \) until it converges
2. Optimization is carried out at \(n \) locations for each \(L \). So that the result parameter estimator is obtained:

\[
\hat{\gamma}_{j*L} = [\hat{\beta}^T_{1L}(v_{j*})\hat{\beta}^T_{2L}(v_{j*})\hat{a}_L\hat{\sigma}_{1L}\hat{\sigma}_{2L}]^T, \text{where } L = 1, 2, \ldots, L*, j* = 1, 2, \ldots, n
\]
3.2. Hypothesis Testing of GTWBWR

Similar to parameter estimation, hypothesis testing is also carried out in stages in each period. The initial stage in testing the hypothesis is to create a hypothesis for simultaneous testing in period L. The hypotheses formed are:

$H_0: \beta_{k1L}(v_j) = \beta_{2L}(v_j) = \cdots = \beta_{kL}(v_j) = 0 ; j = 1, 2, \ldots, n ; k = 1, 2$

$H_1: \text{minimum there is one } \beta_{kL}(v_j) \neq 0; \ h = 1, 2, \ldots, p$

where p is the number of predictor variables in the study.

After determining the hypothesis, it is necessary to maximize the ln-likelihood function under the population and under H_0 to obtain test statistics using the MLRT method. To maximize the function, it is obtained by estimating the parameters using MLE. So first it is necessary to determine the set of parameters under the population and under H_0.

Set of parameters under population:

$\theta_L = \{\beta_{1L}(v_j), \beta_{2L}(v_j), a_L, \sigma_{1L}, \sigma_{2L}; j = 1, 2, \ldots, n\}$

The set of parameters below:

$\omega_L = \{\beta_{o1L0}(v_j), \beta_{o2L0}(v_j), a_oL, \sigma_{o1L}, \sigma_{o2L}; j = 1, 2, \ldots, n\}$

The equation (11) is the same as ln-likelihood function under the population, and the ln-likelihood function under H_0 is:

$$lnln l (\omega_L) = lnln l (\beta_{o1L0}(v_j), \beta_{o2L0}(v_j), a_oL, \sigma_{o1L}, \sigma_{o2L}; j = 1, 2, \ldots, n) = \sum_{l=1}^{L} \sum_{j=1}^{n} ((2 \sum_{k=1}^{2} ln F_{kji}) + ln D_{ji} + (a_oL - 2)lnn C_{ji} + ln T_{ji})(12)$$

where:

$$F_{kji} = \frac{\sigma_{oL}}{a_oL} (y_{kji})^{\frac{\sigma_{oL}}{a_oL} - 1} expexp [-\frac{\sigma_{oL}}{a_oL} \beta_{oL0}(v_j)];$$

$$C_{ji} = \sum_{k=1}^{2} (y_{kji})^{\frac{\sigma_{oL}}{a_oL}} expexp [-\frac{\sigma_{oL}}{a_oL} \beta_{oL0}(v_j)];$$

$$D_{ji} = a_oL C_{ji}^{\frac{a_oL}{2}} - a_oL (a_oL - 1); T_{ji} = expexp [-\sum_{k=1}^{2} (y_{kji})^{\frac{\sigma_{oL}}{a_oL}} expexp [-\frac{\sigma_{oL}}{a_oL} \beta_{oL0}(v_j)]]^{a_oL}.$$
Next, we need to define the function Q_{*L}^{**}, where the function is a function In-likelihood under H_0 which is weighted spatial-temporal w_{j*ls}. It is to get the parameter estimator below H_0 at location j^* period L.

\[Q_{*L}^{**} = \sum_{l=1}^{L} \sum_{j=1}^{n} w_{j*ls} \left(\frac{2}{k=1} \text{lnln } F_{*kjl} + \text{lnln } D_{*jl} + (a_L - 2) \text{lnln } C_{*jl} + \text{lnln } T_{*jl} \right) \]

where:

\[F_{*kjl} = \frac{\sigma_{oKL}}{a_{oL}} (y_{kjl}^*)^{\frac{\sigma_{oKL}}{a_{oL}} - 1} \exp \]

\[exp \left[-\frac{\sigma_{oKL}}{a_{oL}} \beta_{oKL0}(v_{j^*}) \right] \]

\[C_{*jl} = \sum_{k=1}^{2} (y_{kjl}^*)^{\frac{\sigma_{oKL}}{a_{oL}} - 1} \exp \left[-\frac{\sigma_{oKL}}{a_{oL}} \beta_{oKL0}(v_{j^*}) \right] \]

\[D_{*jl} = a_{oL} (a_{oL} - 1) \exp \left[-\sum_{k=1}^{2} (y_{kjl}^*)^{\frac{\sigma_{oKL}}{a_{oL}} - 1} \right] \]

\[T_{*jl} = \exp \left[-\left(\frac{2}{k=1} \text{lnln } F_{*kjl} \right)^{\frac{\sigma_{oKL}}{a_{oL}}} \text{lnln } C_{*jl} \right] \]

The next step is to create the first derivative of equation (13) for each parameter below H_0 then equated to zero. Function Q_{*L}^{**} divided into 4 components, so that:

\[Q_{*L}^{**} = q_{1L}^{**} + q_{2L}^{**} + q_{3L}^{**} + q_{4L}^{**} \]

where:

\[q_{1L}^{**} = \sum_{l=1}^{L} \sum_{j=1}^{n} w_{j*ls} \left(\frac{2}{k=1} \text{lnln } F_{*kjl} \right) \]

\[q_{2L}^{**} = \sum_{l=1}^{L} \sum_{j=1}^{n} w_{j*ls} (a_L - 2) \text{lnln } C_{*jl} \]

\[q_{3L}^{**} = \sum_{l=1}^{L} \sum_{j=1}^{n} w_{j*ls} \text{lnln } C_{*jl} \]

\[q_{4L}^{**} = -\sum_{l=1}^{L} \sum_{j=1}^{n} w_{j*ls} C_{*jl} \]

The derivative of the function Q_{*L}^{**} against the parameters can be seen in Appendix 2.

If the first derivative of the function Q_{*L}^{**} to each of the parameters below H_0 equated with zero results in a parameter estimator that is not closed-form, so optimization is needed by using numerical iteration with BHHH method, which has been described previously so that the parameter estimator vector below is obtained: H_0

\[\hat{\beta}_{o,L}^{**} = [\hat{\beta}_{o1L0}(v_{j^*}) \hat{\beta}_{o2L0}(v_{j^*}) \hat{a}_{oL} \hat{\sigma}_{oL} \hat{\sigma}_{oL}]^T, \text{ where } j^* = 1, 2, ..., n \]

To facilitate decision making, the following test statistics are used:

\[G^2_L = -\lnln \left[L \hat{\omega}_L \right] = -\lnln \left(\frac{L(\hat{\omega}_L)}{L(\hat{\omega}_L)} \right)^2 = 2[\lnln L (\hat{\omega}_L) - \lnln L (\hat{\omega}_L)]_{\rightarrow \infty} X^2_{(a,2e\hat{p}_L)} \]

 DOI 10.18502/kls.v8i1.15586
\(L(\hat{\theta}_L) \) is the likelihood function with the parameter estimator under the population and \(L(\hat{\omega}_L) \) is the likelihood function with the parameter estimator below \(H_0 \). Statistics \(G^2_L \) can be approximated by a chi-square distribution with \(2npL \) degrees of freedom if the sample size is large, where \(2npL \) is the difference between the parameters under \(H_0 \) and the parameters under the population. Area of rejection \(H_0 \) that is \(G^2_L > \chi^2_{(a,2npL)} \) \([10]\). If the results are rejected \(H_0 \) in the form of simultaneous testing, it is necessary to do partial testing. The partial test has the hypothesis as follows:

\[
H_0 : \beta_{khL}(v_j) = 0 \quad H_1 : \beta_{khL}(v_j) \neq 0
\]

where \(k = 1,2; \ h = 1,2,\ldots, p; \ L = 1,2,\ldots,L^* \)

The test statistics used are:

\[
Z = \frac{\hat{\beta}_{khL}(v_j)}{se(\hat{\beta}_{khL}(v_j))} \sim_{nL \to \infty} N(0, 1)\quad (15)
\]

with \(se(\hat{\beta}_{khL}(v_j)) = \sqrt{var(\hat{\beta}_{khL}(v_j))} \), for \(var(\hat{\beta}_{khL}(v_j)) \) obtained from the \(k+1 \) diagonal of the matrix \(var(\hat{\gamma}_{j*L}) = -H^{-1}_{j*L} \).

The \(Z \) statistic will approach the standard normal distribution if the sample size is large, so the rejection region \(H_0 \) is \(Z > Z_{\alpha/2} \) \([11]\).

4. CONCLUSION

The estimation of parameter in the GTWBWR model using the MLE method produces an estimator that is not closed-form, so optimization is needed by using numerical iterations of BHHH at each time period. To test the hypothesis simultaneously using the MLRT method with the \(G^2 \) test statistic with a chi-square distribution and the partial test using the \(Z \) test statistic which is normally distributed.

Acknowledgments

Thanks to BPS Indonesia, lecturer, and ITS college student who support in writing this paper. Accept all kinds of suggestions and feel free to send them via the email provided.

References

APPENDIX 1.

Derivative Q^*_{L} against parameter $\beta_{kL}(v_{j*})$:

$$\frac{\partial Q^*_{L}}{\partial \beta_{kL}(v_{j*})} = \frac{\partial q_{1L}}{\partial \beta_{kL}(v_{j*})} + \frac{\partial q_{2L}}{\partial \beta_{kL}(v_{j*})} + \frac{\partial q_{3L}}{\partial \beta_{kL}(v_{j*})} + \frac{\partial q_{4L}}{\partial \beta_{kL}(v_{j*})}$$

where:

$$\frac{\partial q_{1L}}{\partial \beta_{kL}(v_{j*})} = \sum_{l=1}^{L} \sum_{j=1}^{n} \left(-\frac{\sigma_{kL}}{a_{L}} \psi_{jj*}(x_{jl}) \right)$$
\[
\frac{\partial q_{2L}}{\partial \beta_{kL}(v_{ja})} = \sum_{i=1}^{L} \sum_{j=1}^{n} w_{ij}(a_L - 2) \frac{-\sigma_{kL} x_{ji}}{a_L} A_{*ji}^{-1}(y_{kji})^{\alpha_{kl}} \exp [\frac{\sigma_{kL} \beta \mathbf{T}_{kL}(v_{ja}) x_{ji}}{a_L}] \\
\exp \left[-\frac{\sigma_{kL} \beta \mathbf{T}_{kL}(v_{ja}) x_{ji}}{a_L} \right] \\
\frac{\partial q_{4L}}{\partial \beta_{kL}(v_{ja})} = \sum_{i=1}^{L} \sum_{j=1}^{n} w_{ij}(a_L - 2) \frac{-\sigma_{kL} x_{ji}}{a_L} A_{*ji}^{-1}(y_{kji})^{\alpha_{kl}} \exp [\frac{\sigma_{kL} \beta \mathbf{T}_{kL}(v_{ja}) x_{ji}}{a_L}] \\
\exp \left[-\frac{\sigma_{kL} \beta \mathbf{T}_{kL}(v_{ja}) x_{ji}}{a_L} \right]
\]

Derivative \(Q_{*L} \) against parameter \(a_L \):

\[
\frac{\partial Q_{*L}}{\partial a_L} = \frac{\partial q_{1L}}{\partial a_L} + \frac{\partial q_{2L}}{\partial a_L} + \frac{\partial q_{3L}}{\partial a_L} + \frac{\partial q_{4L}}{\partial a_L}
\]

where:

\[
\frac{\partial q_{1L}}{\partial a_L} = \sum_{i=1}^{L} \sum_{j=1}^{n} w_{ij} \ln \frac{\ln \left[A \mathbf{T}_{*ji}(v_{ja}) (a_L - 2) \right]}{\sigma_{kL} (y_{kji})^{\alpha_{kl}} \exp \left[-\frac{\sigma_{kL} \beta \mathbf{T}_{kL}(v_{ja}) x_{ji}}{a_L} \right]} \\
\frac{\partial q_{2L}}{\partial a_L} = \sum_{i=1}^{L} \sum_{j=1}^{n} w_{ij} \ln \frac{\ln \left[A \mathbf{T}_{*ji}(v_{ja}) (a_L - 2) \right]}{\sigma_{kL} (y_{kji})^{\alpha_{kl}} \exp \left[-\frac{\sigma_{kL} \beta \mathbf{T}_{kL}(v_{ja}) x_{ji}}{a_L} \right]} \\
\frac{\partial q_{3L}}{\partial a_L} = \sum_{i=1}^{L} \sum_{j=1}^{n} w_{ij} \ln \frac{\ln \left[A \mathbf{T}_{*ji}(v_{ja}) (a_L - 2) \right]}{\sigma_{kL} (y_{kji})^{\alpha_{kl}} \exp \left[-\frac{\sigma_{kL} \beta \mathbf{T}_{kL}(v_{ja}) x_{ji}}{a_L} \right]} \\
\frac{\partial q_{4L}}{\partial a_L} = \sum_{i=1}^{L} \sum_{j=1}^{n} w_{ij} \ln \frac{\ln \left[A \mathbf{T}_{*ji}(v_{ja}) (a_L - 2) \right]}{\sigma_{kL} (y_{kji})^{\alpha_{kl}} \exp \left[-\frac{\sigma_{kL} \beta \mathbf{T}_{kL}(v_{ja}) x_{ji}}{a_L} \right]}
\]

Derivative \(Q_{*L} \) against parameter \(\sigma_{kL} \):

\[
\frac{\partial Q_{*L}}{\partial \sigma_{kL}} = \frac{\partial q_{1L}}{\partial \sigma_{kL}} + \frac{\partial q_{2L}}{\partial \sigma_{kL}} + \frac{\partial q_{3L}}{\partial \sigma_{kL}} + \frac{\partial q_{4L}}{\partial \sigma_{kL}}
\]

where:

\[
\frac{\partial q_{1L}}{\partial \sigma_{kL}} = \sum_{i=1}^{L} \sum_{j=1}^{n} w_{ij} \ln \frac{\ln \left[A \mathbf{T}_{*ji}(v_{ja}) (a_L - 2) \right]}{\sigma_{kL} (y_{kji})^{\alpha_{kl}} \exp \left[-\frac{\sigma_{kL} \beta \mathbf{T}_{kL}(v_{ja}) x_{ji}}{a_L} \right]} \\
\frac{\partial q_{2L}}{\partial \sigma_{kL}} = \sum_{i=1}^{L} \sum_{j=1}^{n} w_{ij} \ln \frac{\ln \left[A \mathbf{T}_{*ji}(v_{ja}) (a_L - 2) \right]}{\sigma_{kL} (y_{kji})^{\alpha_{kl}} \exp \left[-\frac{\sigma_{kL} \beta \mathbf{T}_{kL}(v_{ja}) x_{ji}}{a_L} \right]}
\]
\[\exp \left[-\frac{\sigma_{kL}}{a_L} \beta_{kL}^T(v_{js}) x_{jl} \right] (\ln \ln y_{kij} - \beta_{kL}^T(v_{js}) x_{jl}) \]

\[\frac{\partial q_{ij}}{\partial \sigma_{kL}} = \sum_{l=1}^{L} \sum_{j=1}^{n} \frac{w_{ij}^j}{a_l \sigma_{kL}^{l-1}} \left[a_l^{j} A_j^{l-1} \left(y_{ij} \right)^{\sigma_{kL}^{l-1}} \exp \left[-\frac{\sigma_{kL}}{a_l} \beta_{kL}^T(v_{j}) x_{ij} \right] \right] (\ln \ln y_{kij} - \beta_{kL}^T(v_{j}) x_{ij}) \]

\[\frac{\partial q_{4L}}{\partial \sigma_{kL}} = -\sum_{l=1}^{L} \sum_{j=1}^{n} w_{jj+l} A_{*j}^{l-1} (y_{ij})^{\sigma_{kL}^{l-1}} \exp \exp \left[-\frac{\sigma_{kL}}{a_L} \beta_{kL}^T(v_{js}) x_{jl} \right] \]

APPENDIX 2.

\(Q^{*\ast}_L \) against parameter \(\beta_{okL0}(v_{js}) \):

\[\frac{\partial Q^{*\ast}_L}{\partial \beta_{okL0}(v_{js})} = \frac{\partial q^{*\ast}_1L}{\partial \beta_{okL0}(v_{js})} + \frac{\partial q^{*\ast}_2L}{\partial \beta_{okL0}(v_{js})} + \frac{\partial q^{*\ast}_3L}{\partial \beta_{okL0}(v_{js})} + \frac{\partial q^{*\ast}_4L}{\partial \beta_{okL0}(v_{js})} \]

where:

\[\frac{\partial q^{*\ast}_1L}{\partial \beta_{okL0}(v_{js})} = \sum_{l=1}^{L} \sum_{j=1}^{n} \left(-\frac{\sigma_{kL}}{a_L} w_{jj+l} \right) \]

\[\frac{\partial q^{*\ast}_2L}{\partial \beta_{okL0}(v_{js})} = \sum_{l=1}^{L} \sum_{j=1}^{n} w_{jj+l} (a_{oL} - 2) \frac{\sigma_{okL}}{a_{oL}} C_{*j}^{l-1} (y_{ij})^{\frac{\sigma_{okL}}{a_{oL}}} \exp \exp \left[-\frac{\sigma_{okL}}{a_{oL}} \beta_{okL0}(v_{js}) \right] \]

\[\frac{\partial q^{*\ast}_3L}{\partial \beta_{okL0}(v_{js})} = \sum_{l=1}^{L} \sum_{j=1}^{n} \left(-\frac{\sigma_{okL}}{a_{oL}} \sigma_{oL} \exp \left[\frac{\sigma_{okL}}{a_{oL}} \beta_{okL0}(v_{js}) \right] \right) \]

\[\frac{\partial q^{*\ast}_4L}{\partial \beta_{okL0}(v_{js})} = \sum_{l=1}^{L} \sum_{j=1}^{n} w_{jj+l} C_{*j}^{l-1} (y_{ij})^{\frac{\sigma_{okL}}{a_{oL}}} \exp \exp \left[-\frac{\sigma_{okL}}{a_{oL}} \beta_{okL0}(v_{js}) \right] \]

Derivative \(Q^{*\ast}_L \) against parameter \(a_{oL} \):

\[\frac{\partial Q^{*\ast}_L}{\partial a_{oL}} = \frac{\partial q^{*\ast}_1L}{\partial a_{oL}} + \frac{\partial q^{*\ast}_2L}{\partial a_{oL}} + \frac{\partial q^{*\ast}_3L}{\partial a_{oL}} + \frac{\partial q^{*\ast}_4L}{\partial a_{oL}} \]

where:

\[\frac{\partial q^{*\ast}_1L}{\partial a_{oL}} = \sum_{l=1}^{L} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \left(\ln \ln y_{kij} - \beta_{oL0}(v_{j}) \right) \]

\[\frac{\partial q^{*\ast}_2L}{\partial a_{oL}} = \sum_{l=1}^{L} \sum_{j=1}^{n} w_{jj+l} \ln C_{*j}^{l-1} + (a_{oL} - 2) \frac{C_{*j}^{l-1}}{a_{oL}} \sum_{k=1}^{2} \sigma_{okL} (y_{kij})^{\frac{\sigma_{okL}}{a_{oL}}} \exp \]
\[
\exp \left[-\frac{\sigma_{oL}}{a_{oL}} \beta_{oL0}(v_{j+}) \right] \left(\beta_{oL0}(v_{j+}) - \ln \ln y_{kj} \right)
\]

\[
\frac{\partial q^*_{L}}{\partial a_{oL}} = -L \sum_{l=1}^{L} \sum_{j=1}^{n} w_{j+l} C_{*jl} a_{oL} \left[\ln C_{*jl} + \frac{1}{\sigma_{oL}} \sum_{k=1}^{\omega_{oL}} (\ln y_{kjl}) \exp \left[-\frac{\sigma_{oL}}{a_{oL}} \beta_{oL}(v_{j}) \right] [\ln y_{kj} - \beta_{oL0}(v_{j})] \right]
\]

\[
\exp \left[-\frac{\sigma_{oL}}{a_{oL}} \beta_{oL0}(v_{j+}) \right] \left(\beta_{oL0}(v_{j+}) - \ln \ln y_{kj} \right)
\]

Derivative \(Q^{*}_{L} \) against parameter \(\sigma_{oL} \):

\[
\frac{\partial Q^{*}_{L}}{\partial \sigma_{oL}} = \frac{\partial q^{*1}_{L}}{\partial \sigma_{oL}} + \frac{\partial q^{*2}_{L}}{\partial \sigma_{oL}} + \frac{\partial q^{*3}_{L}}{\partial \sigma_{oL}} + \frac{\partial q^{*4}_{L}}{\partial \sigma_{oL}}
\]

where:

\[
\frac{\partial q^{*1}_{L}}{\partial \sigma_{oL}} = \frac{1}{\sigma_{oL}} \sum_{r=1}^{\omega_{oL}} \sum_{j=1}^{n} w_{jr} \left[\ln y_{jr} - \beta_{oL0}(v_{j}) \right]
\]

\[
\frac{\partial q^{*2}_{L}}{\partial \sigma_{oL}} = \frac{n}{\sigma_{oL} a_{oL}} \sum_{l=1}^{L} \sum_{j=1}^{n} w_{j+l} (a_{oL} - 2) C_{*jl}^{-1} (\ln y_{kj}) \exp \left[-\frac{\sigma_{oL}}{a_{oL}} \beta_{oL}(v_{j}) \right] (\ln y_{kj} - \beta_{oL0}(v_{j}))
\]

\[
\frac{\partial q^{*3}_{L}}{\partial \sigma_{oL}} = \frac{n}{\sigma_{oL} a_{oL}} \sum_{l=1}^{L} \sum_{j=1}^{n} w_{j+l} C_{*jl}^{-1} (\ln y_{kj}) \exp \left[-\frac{\sigma_{oL}}{a_{oL}} \beta_{oL}(v_{j}) \right] (\ln y_{kj} - \beta_{oL0}(v_{j}))
\]

\[
\frac{\partial q^{*4}_{L}}{\partial \sigma_{oL}} = -\frac{n}{\sigma_{oL} a_{oL}} \sum_{l=1}^{L} \sum_{j=1}^{n} w_{j+l} C_{*jl}^{-1} (\ln y_{kj}) \exp \left[-\frac{\sigma_{oL}}{a_{oL}} \beta_{oL}(v_{j}) \right] (\ln y_{kj} - \beta_{oL0}(v_{j}))
\]

DOI 10.18502/kls.v8i1.15586 Page 252