Research article

The Effect of Biochar on Root Growth in Sustainable Agriculture

Susila Herlambang1, Danang Yudhiantoro2, Muammar Gomareuzzaman3, Indriana Lestari4, Astrid Wahyu Adventri Wibowo5, and Ayu Utami3

1Department of Soil Science, Faculty of Agriculture, Indonesia
2Department of Economic Management, Faculty of Business Economics, Indonesia
3Department of Environmental Engineering, Faculty of Mineral Technology, Indonesia
4Department of Chemical Engineering, Faculty of Industrial Engineering, Indonesia
5Department of Industrial Engineering, Faculty of Industrial Engineering, Indonesia

Abstract.
Sustainable agriculture can be used to achieve food security by continuously producing agriculture while taking safety, soil health, and environmental and economic considerations into account. Reduced agricultural land for agricultural production could stifle the growth of sustainable agriculture. This study made use of biochar, which is made from organic waste and serves to temporarily hold soil nutrients in the root zone of plants. The focus of this research was to find new ways to expand coastal land use by using biochar made from organic waste as a soil amendment for agriculture, particularly vegetable production. The study employed a two-factor design: the first was the size of the biochar material, which was coarse and fine, and the second was the biochar dosage, which included 10, 15 and 20 tons per hectare. Coconut shell waste was used to make the biochar. According to the results, the application of course-sized biochar at a dose of 15 tons per hectare resulted in lateral root distribution. Vegetable root development tended to be reduced when fine biochar was used. We can conclude that one of the solutions for sustainable agricultural production is to use biochar ameliorant materials made from environmentally friendly organic waste.

Keywords: Biochar, Coastal land, Organic matter, Roots Areas, Soil Carbon, and Sustainability Agriculture.

1. Introduction

The coastal soil Samas beach has sand fraction that has low organic matter, low absorption capacity, low CEC, high permeability and high sensitivity to erosion. Ameliorant in coastal sandy soil was needed to reduce problem. Environmentally friendly soil improvement by utilizing waste with high carbon content by biochar. Biochar is an active biological carbon that functions to store nutrients in the soil. Besides that, biochar can also absorb soil water which can increase humidity and persistent so that it can last a long time in the soil. Coconut shell biochar was able to increased the cation exchange...
capacity (CEC) in the soil. Cation exchange capacity in soil applied with coconut shell biochar has an indirect effect on the level of nutrient leaching in the soil. The CEC showed the ability of the soil to exchange a number of cations such as K$^+$. Its can bind to NO$_3^-$ to form potassium nitrate compounds so that it can reduce the level of leaching of nitrogen elements. Coconut shell biochar pores have size between 0.56-10.37 μm. It can adsorb nitrogen which has a covalent radius of only 71 pm (71 x 10$^{-6}$ μm). The specific surface area of biochar, reaching 330 m2/g causes biochar to have a high adsorption capacity for nutrients[1]. The increase in nutrients in the root area causes the availability of nutrients to increase which has an impact on root development.

2. Methodology

The Coastal sandy soil has the potential to develop agricultural areas. The limited physical and chemical characteristics of the soil require handling measures. Utilization of environmentally friendly waste is an alternative to overcome the problem of coastal sandy land. The use of carbon-rich materials as an effort to increase the absorption of nutrients and water is an improvement in sandy soil. Carbon-rich organic waste was processed into biochar to reduce soil nutrient leaching and soil moisture. Biochar made from coconut shells obtained in villages around the coast is an alternative to the use of environmentally friendly waste. The biochar material is mixed in the soil with an incubation period of 1 month by testing the material with the size of a fine about powder and coarse material about 2-3 cm flakes. Material treatment with different sizes will be tested on pakcoy vegetable plants. The research technique used a survey method to determine the location, while the coastal sand was taken descriptively, namely by direct taking the selected sand soil material which had not been added to ameliorant. The research design that will be used in the study is a completely randomized design (CRD) with two treatments, namely the particle size of biochar and the dose of coconut shell biochar and the dose of biochar. The particle size of biochar was powder form and flake size about 2-3 cm, while the dosage of biochar is 0, 10, 15 and 20 tons per hectare. Each treatment was incubated for first month before planting pakcoy at coastal sandy Samas beach Yogyakarta Indonesia.
3. Result and Discussion

The Coastal sandy soil. Cultivation of plants on coastal sandy land requires additional application of technology to overcome the characteristics of coastal sandy land. Utilization of organic waste to be processed into biochar is one of the environmentally friendly based land management. Making biochar with combustion technology by pyrolysis is combustion with low environmental emissions\[3\], \[4\]. The use of organic coconut shell waste is an effort to improve coastal sandy land to enrich soil carbon which functions as a framework to prevent leaching of nutrients for plants. Carbon in the soil affects the level of fertility and soil quality to provide nutrients for plants. The carbon source comes from plant biomass which was environmentally friendly\[5\]–\[7\].

<table>
<thead>
<tr>
<th>Kind of Analysis</th>
<th>Coastal sandy soil</th>
<th>Coconut of Biochar</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.4</td>
<td>9.8</td>
</tr>
<tr>
<td>CEC (cmol(+)/kg	extsuperscript{-1})</td>
<td>0.43</td>
<td>2.0</td>
</tr>
<tr>
<td>N tot (ppm)</td>
<td>27.50</td>
<td>0.35</td>
</tr>
<tr>
<td>P avl (ppm)</td>
<td>20</td>
<td>0.60</td>
</tr>
<tr>
<td>K avl (ppm)</td>
<td>99</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Coastal sandy soil in Samas beach has the potential to develop environmentally friendly agricultural production with minimal chemical properties (Table 1). Soil reaction with a pH of 5.4 was good potential for agricultural production. The low cation exchange capacity can be increased by adding an ameliorant in the form of a material that can increase the large specific surface\[2\]–\[10\]. While the low nutrients in coastal sandy land can be added by providing organic and inorganic nutrients. The addition of environmentally friendly ameliorants by utilizing organic waste in the surrounding area is an alternative to preserve the environment and carbon emissions.

Treatment of biochar with different sizes on sandy soils has a different effect on soil carbon yields. The application of biochar is more effective on carbon availability than the use of crude biochar (Figure 1). Refined coconut shell biochar contributes to the supply of carbon in the biochar material because the fine particles have a large surface area. Nutrient absorption by carbon in fine-sized biochar at doses of 10 and 15 tons per hectare gave the highest increase in carbon yield of 0.2% compared to control (Figure 1). The increased supply of organic C comes from biochar made from coconut shell which is burned by pyrolysis to produce stable carbon\[11\]–\[13\]. Statistically, the increase in carbon availability was not significant, but the fine biochar contributed to a higher carbon increase than the crude biochar. The sand fraction is a single fraction.
in which the grains of the fraction are not bonded to each other which results in the presence of macro pores between large particles. This causes the low nutrient bound in the sand grains causing the cation exchange capacity to also be small. The treatment of fine and coarse sized biochar has an effect on the storage of nutrients due to the addition of the surface area between the sand particles. This is because the sand has a dominant fraction or coarse particles so that the presence of biochar with a smaller size fraction than the sand fraction will fill the macro pores which are used as a temporary housing framework for soil nutrients. The characteristics of biochar are porous, capable of absorbing water and soil nutrients. Biochar is a place to store nutrients temporarily in the pores of the material so that biochar can reduce the loss of nutrients due to leaching in sandy soils [12], [14]–[17].

The treatment ameliorant biochar was mixed with soil minerals contributed to direct contact with the soil fraction. so that it would form a weak bond in the sand fraction. Organic waste or organic residue that contains a lot of carbon is a material derived from wood material with the quality of the material being a parameter in determining the amount of C content in the network [9]. The application of biochar in the soil will react with soil minerals which can increase soil C-organic levels and increase the availability of nutrients in the soil[1], [2], [18]–[20]. Nitrogen availability increased in the presence of coconut shell biochar ameliorant (Figure 2a). The increase in N as a nutrient does not come from biochar material because the function of biochar was not as a fertilizer but serves to bind nutrients with weak bonds in soil minerals. Nutrients bound to biochar are in the biochar pore spaces (Figure 2b).
The increase in soil nitrogen content in coastal sandy soil that was applied with biochar in the form of about fine-sized fraction gave higher yields than the biochar in coarse fraction. Its surface of the fine fraction provides a larger particle surface area than the sand and biochar fraction in the form of flakes. Pore size in fine biochar 0.56–10.37 μm can adsorb nitrogen which has a covalent radius of only 71 pm (71 x 10^{-6} μm). The specific surface area of biochar material reaches 330 m²/g causing biochar to have a high adsorption capacity for nutrients so that fine biochar is able to store higher nitrogen nutrients [1]. Meanwhile, in the application of coarse fraction biochar in sandy soil, availability decreased at doses of 10 and 15 tons per hectare and increased N availability at doses of 20 tons per hectare (Figure 2a). The addition of a dose of C in the first month’s incubation gives an opportunity for a higher amount of C that comes from the results of the decomposition process in the soil and the amount of supply of C from an additional dose of 5 tons per hectare. In the treatment of refined biochar at a dose of 15 tons per hectare, the amount of N decreased (Figure 3). Its because the supply of N in the soil was used by plants in the vegetative phase in the growth and development of pokcay plants. The development of plant physiological growth correlated significantly with the application of coconut shell biochar (Figure 3).

The biochar in the form of fine fraction and flakes gave a positive contribution to physiological development (Figure 3). Decomposition of fine fraction biochar contributes faster than the decomposition of biochar in the form of flakes. The grain size of starch-sized biochar tends to be faster in capturing nutrients and exchanging soil cations that can be utilized by plant roots for plant growth [1], [2], [7], [21]. This can be proven in the development of pakcay plant growth with plant height and number of leaves formed in the fine fraction biochar higher than in the crude fraction biochar treatment (Figure 3). Treatment of crude fraction biochar showed good development in the development of root complexes in the soil. This illustrates that the treatment of crude fraction biochar
was slower in the decomposition of biochar material so that it provides a smaller supply of plant nutrients captured in the biochar pores which contributes to the supply of plant nutrients, especially in supporting the growth and development of the vegetative part of the pokcay plant, which is only sufficient and supports root area plant.

Root development due to the application of coconut shell biochar amelioration on coastal sandy soil gave a significant difference in root development. In the case of root development without biochar, the root development was lateral downwards, while with the application of fine and coarse-sized biochar, the impact of root development tends to be horizontal and grouped (Figure 4). Root development is due to the presence of biochar temporarily storing nutrients around the root complex for the growth and development of plant roots [2],[5],[7],[20],[22]–[25]. The coastal sandy soil was dominated by more than 90% of the sand fraction. The application of fine biochar appears to give more distribution development than the application of coarse-sized biochar. This is because
the fine fraction in biochar will give more direct effect quickly in coagulation with the sand fraction which gives a larger surface area for the type of coagulation compared to the coarse fraction biochar application [2],[10],[25],[26]. Nutrients in the application of fine fraction biochar are possible because the application of biochar on sandy soils has an absorption pore width of 10.37 μm (Figure 2 b). Nitrogen has a covalent radius of only 71 pm (71 x 10-6 μm) while the specific surface of biochar about 330 m²/g causing biochar to have a high adsorption capacity of nutrients [1], [2]. The growth of vegetable crops on coastal sandy land produced is the vegetative part in the form of leaves and stems requiring relatively more nitrogen absorption than other elements for growth. Biochar in the fine fraction with a storage pore width of 10.37 μm provides a large enough opportunity for adsorption.

4. Conclusion

The application of fine and coarse sized biochar ameliorants had a significant effect on the enrichment of C-organic in coastal sandy soils. Biochar with fine fraction size has a storage capacity of 10.37 μm prom wide and provides lateral root development in groups. In coastal sandy areas, the application of fine fraction biochar is more effective than coarse-sized biochar. The coastal sandy soil was potential land for the expansion of agricultural areas although it is dominated by the sand fraction. Limited soil chemical properties can be added from organic and inorganic fertilizers. Soil irrigation can be designed with various irrigation techniques. The combined treatment of organic waste management with nutrient amelioration techniques and irrigation techniques is a combination of environmentally friendly coastal soils.

5. Acknowledge

Thank you for facilities LPPM Universitas pembangunan nasional veteran Yogyakarta Indonesia, through grants Cluster skim of ministry research and technology of education Indonesian 2020/2021

References

https://doi.org/10.1007/s11270-010-0366-4

