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Abstract
Vortex Induced Vibration (VIV) of structures is of practical interest to many fields of
engineering. The particular case of a rigid cylinder mounted under elastic supports
and constrained to oscillate in a single direction is modelled using OpenFOAM’s
two-dimensional Reynolds-averaged Navier-Stokes (RANS) equations with k-ω SST
turbulence model. The model aimed for relativelly low Reynolds numbers (2500 ≤ Re
≤ 15000) and the results were compared with Khalak and Williamson’s experimental
results with the intent of also evaluating maximum amplitude to diameter ratio, A/D,
achieving good agreement between both computational and experimental data. Lift
and drag coefficients, C𝐿 and C𝐷 respectively, were also evaluated as well as frequency
of oscillation, so the system could be kept in synchronization as what concerns the
vortex shedding frequency and oscillating frequency (f𝑠 ≈ f𝑜𝑠𝑐 ). In this range of Reynolds
numbers, as normalized velocity (U*) increased, several zones could be observed: The
initial excitation zone, which jumps quickly to and upper branch zone at U* ≈ 4.5,
moving to a lower branch zone at U* ≈ 7 and falling into desynchronization at U*≈ 11-13.

1. Introduction

Vortex-induced vibrations (VIV) is considered by many an issue that can affect any
structure and it has been studied by a lot of researchers in order to understand more
deeply the phenomena. Having rigid cylinder mounted under elastic supports when
inserted in a free stream and constrained to oscillate transversely to its direction
is one of the most basic ways to understand VIV. One of the first studies on the
topic was performed by Feng [1], where he conducted a detailed investigation of the
vortex shedding frequency, displacement amplitude and the phase angle between
the fluctuating pressure and the displacement signals of both circular and D-section
cylinders. As a result of it, lift coefficients were made possible to be obtained, although,
not by measurement but rather by integration. After some review documents on vortex
shedding from oscillating bluff bodies [2, 3], Khalak and Williamson [4–6] did some
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research on the same topic as Feng [1], on low mass (around 1% of what was done in
his study) and damping systems, allowing them to test cylinder cases in laboratory in a
more convenient way. In these systems there are four main zones of displacement of the
cylinder. The initial excitation, the upper branch of the excitation, the lower branch and
finally the desynchronization zone. As laboratory facilities evolved, more experiments
were made available, and that is the case of the experiments made by Blevins and
Coughran [7], where VIV forces were tested with one and two vibrating directions, with
variable mass, damping and Reynolds number which was a major contribution to the
understanding of VIV since amplitude, frequency, entrainment, and drag were reported
in the paper.

This displacement was in more recent studies, harnessed to produce energy either
when the fluid is water or air. Bernitsas et al. [8] created Vortex Induced Vibration Aquatic
Clean Energy (VIVACE), a device that makes use of two different vortex inducedmotions
phenomena, VIV forces and galloping to produce energy. Initially developed in 2008,
it has been improved since to maximize displacement directly improving energy output
[9–13]. As of wind energy harnessing, Chizfahm et al [14] used a different approach
harnessing VIV, where the cylinder is constrained in one side only and it is free to move
in both normal and transverse directions of the flow.

What concerns numerical approaches, Wanderley et al. [15] investigated the VIV
phenomena by implementing a finite difference method (FDM) using slightly com-
pressible Reynolds-Averaged Navier Stokes (RANS) equations with the k-ε turbulence
model. For high mass ratio the model was able to reproduce experimental data but
for low mass ratios, such as the case of Khalak and Williamson [6], CFD failed to
reproduce VIV amplitudes. Later in 2012, with a new study, that problem was solved
with some adjustments to the model which allowed very good approximation to Khalak
and Williamson’s study [16].

Wu et al. [17] did some similar experiment to this one, although with Reynolds from
35000 to 130000 and using the 2D unsteady RANS equations (URANS) with the Spalart
Allmaras turbulencemodel to simulate the flow around the springmounted circular cylin-
der, where with the harnessing of VIV and galloping by introducing passive turbulence
control (PTC) in the model, good results were obtained agreeing with experimental
results even though the turbulence model was only a one equation model.

Hence, in the present work, the accuracy of the SST k-ω model when VIV forces are
present in the domain is verified.
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2. Vortex Induced Vibrations

In general, the separation of the boundary layer occurs due to the adverse pressure
gradient. This unfavorable pressure gradient is caused by the geometry of the body
and occurs when the viscous forces are not sufficient to keep the flow adjacent to the
wall, due to its minor contribution towards the inertial forces of the fluid moving around
the surface.

The ratio between the viscous and inertial forces in a flow is represented by the
dimensionless Reynolds Number, R𝑒, given by Eq. (1).

𝑅𝑒 =
𝜌𝑈𝐷
𝜇 (1)

with ρ and µ being the density and the dynamic viscosity of the fluid, respectively,
D the characteristic length of the body and U the average velocity in the undisturbed
region of the flow.

The phenomenon of separation of the boundary layer of the body surface is governed
by the Reynolds Number and all the characteristics of this separation, transition and
wake have a relation with this dimensionless parameter.

For extremely low Reynolds values, the flow is entirely laminar and remains adjacent
to the wall due to the dominance of viscous forces. As the Reynolds number increases,
the inertial forces begin to prevail over the viscous ones so the flow can no longer
withstand the adverse pressure gradient and the separation of the boundary layer with
the body finally occurs. Different flow patterns occur in the disturbed regions due to the
separation of the flow and the transition from the laminar to turbulent regime, according
to the Reynolds Number.

The transition phenomenon and the classification of the regimes are important to
better understand the flow patterns that will form in the wake region, which is the most
important region in studies of flow around cylindrical bodies, since the fluctuations that
occur in this region will reflect directly on the surface of the body and are responsible
for causing vibrations, which will be studied in this work.

The wake region is composed by vortex generated on the surface that are dragged
by the flow. The vortex shedding frequency, f𝑠, depends on the distance between the
shear layers. The closer they are, the faster they interact with each other and the
greater the vortex shedding frequency will be. The distance between these layers is
associated with cylinder diameter and flow velocity so, the frequency of vortex emission
is also associated with the Reynolds number of the flow and the point of separation
of the vortex. The forces acting on the cylinder surface are then analysed for a better
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understanding of how the vibrations induced by the flow are evaluated. The force
resulting from the interaction between the flow and the cylinder can be decomposed
into two components: Drag force, F𝐷, which is the projected force in the longitudinal
direction of the flow, and the lift force, F𝐿, which is the vertical component, normal to
the flow.

When expressed in dimensionless terms of dynamic pressure of the fluid, that is, by
the amount of kinetic energy that can be converted into pressure in cases of stagnation,
we obtain the drag coefficients, C𝐷, and lift, C𝐿, given by Eq. (2) and (3), respectively.

𝐶𝐷 = 𝐹𝐷
0.5𝜌𝑈 2𝐷𝐿 (2)

𝐶𝐿 = 𝐹𝐿
0.5𝜌𝑈 2𝐷𝐿 (3)

In these equations, DL is the product of the diameter by the length of the cylinder,
resulting in the projected area in the direction normal to the flow.

Another dimensionless parameter equally relevant to the present study, which also
evolves with the Reynolds number is the Strouhal number, St, and its purpose is to relate
the frequency of vortex emission with the geometric and flow characteristics, stated in
Eq. (4).

𝑆𝑡 = 𝑓𝑠𝐷
𝑈 (4)

where the vortex shedding frequency, f𝑠, is expressed in Hertz [Hz].

When a fluid flows past a structure, can cause a phenomenon referred to as flow
induced vibration. This phenomenon can manifest itself in some ways. Among these
possible types of excitation, the most frequent in cylindrical bodies is the Vibration
Induced Vibration, theme in this work.

Thus, given a cylinder subject to the incident flow, the velocity of this flow can be
varied so that the frequency of vortex shedding also varies, and consequently, the
fluctuation of the pressure field around the cylinder. As the resulting forces acting on
the body are nothing more than the integration of the pressure field on the surface,
thereof, this temporal variation of the vertical lift force causes an excitation with a defined
frequency, the same as that of vortex shedding.

One may think that this variation in the pressure field on the cylinder surface occurs
so that there is an excitation towards the flow and another in the direction transverse
to it, in the vertical direction. This effectively happens, but with different frequencies
for the same flow condition. The frequency of drag variation is approximately twice as
high as the lift force frequency since the lift force varies from its positive maximum point
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to the negative maximum point for each vortex emission cycle while the drag force
alternates between the maximum and minimum values for each vortex emitted, even
though it changes direction.

Once these phenomena that cause forces in the system are understood, it is still
necessary to understand the characteristics of the structure responsible for responding
to these excitations and what is the cause of the amplitudes of the vibrations. Thus, the
equation of motion representing the vortex-induced vibrations in a cylinder oscillating
in the y direction (normal to the flow) is expressed by Eq. (5).

𝑚 ̈𝑦 + 𝑐 ̇𝑦 + 𝑘𝑦 = 𝐹 (5)

where m is the mass of the oscillating structure, c is the damping constant of the system,
k is the stiffness constant of the structure, F is the excitation force in the transverse
direction e ̈𝑦, ̇𝑦 and y, are the acceleration, velocity, and position in the y direction. In a
regime where the natural frequency of the structure is synchronized with the excitation
force of the structure, a good approximation of the force, F, over time is given by Eq. (6).

𝐹 (𝑡) = 𝐹0𝑠𝑖𝑛 (𝜔𝑡 + 𝜙) (6)

where F0 is the magnitude of the force caused by the flow, ω is the natural oscillation
frequency of the body given in radians per second, and 𝜑 is the phase angle between
the excitation and the displacement of the cylinder and t is the time. Since the systems
subject to VIV can be modelled as harmonic systems without impairing the physical
representation of the problem, the system response can be given Eq. (7).

𝑦 (𝑡) = 𝑦0𝑠𝑖𝑛 (𝜔𝑡) (7)

In dynamic systems that are governed by Equation (5) without damping, its angular
velocity can be expressed Eq. (8).

𝜔 = 2𝜋𝑓𝑁 = √𝐾/𝑚 (8)

where f𝑁 is the frequency of vortex shedding, K is the spring stiffness and m is the mass
of the system. In order to obtain greater accuracy in the comparisons between cases
where the operating conditions are different, whether the frequency or any other type
of parameters, it is important to carry out analyses under non-dimensional conditions.
Table 1 defines the most used parameters in this type of analysis, where m𝑑 is the
displaced mass, and c𝑐𝑟 is the critical damping of the system.

Given these parameters and by knowing how to calculate them, it is possible to
understand the behaviour of this system.
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TABLE 1: Non-dimensional parameters of VIV systems.

A* 𝑦0/𝐷 Amplitude Ratio

U* 𝑈/𝑓𝑁𝐷 Velocity Ratio

m* 𝑚/𝑚𝑑 = 𝑚/𝜋𝜌𝐷2𝐿/4 Mass Ratio

f* 𝑓/𝑓𝑁 Frequency Ratio

ζ 𝑐/𝑐𝑐𝑟 = 𝑐/2√𝑘𝑚 Damping Ratio

Re 𝜌 𝑈 𝐷/𝜈 Reynolds Number

3. Problem Description

In the present study, the effect of vortex induced vibrations in a single circular cylinder is
investigated under Reynolds numbers of 2500≤Re≤ 15000. The simulations presented
in this study are obtained through the open source CFD C++ tool OpenFOAM.

The flow is assumed to be two-dimensional, unsteady, incompressible and as stated
previously by the Reynolds number, turbulent.

The continuity equation as well as momentum equation (Eq. (9) and (10), respectively)
are solved using the OpenFOAM software which uses finite volume method (FVM).

𝜕 (𝑢𝑖)
𝜕𝑥𝑖

= 0 (9)

𝜌
(
𝜕 (𝑢𝑖)
𝜕𝑡 +

𝜕 (𝑢𝑗𝑢𝑖)
𝜕𝑥𝑗 )

= − 𝜕𝑝
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗 [

𝜇 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖)

− 𝜌𝑢′𝑖𝑢′𝑗] (10)

where u and u’ are the mean and fluctuating velocity components, ρ is density, p is
pressure, x is coordinate and the subscripts i and j denote the directions in Cartesian
coordinates. The last term −𝜌𝑢′𝑖𝑢′𝑗 is the Reynolds stress tensor, which needs modelling
in order to solve Eq. (10). To do so, the k-ω SST model, which was developed by Menter
[18] was chosen. It is a model that shares features of the k-ε and k-ω models, as it
results from a combination of both. This model becomes a k-ε model in the outer region
of the boundary layer, while in the inner part it becomes a k-ω model. Regarding the
transport equations, the k-ω SST model is similar to the k-ω model but includes its own
characteristics. The turbulent kinetic energy, k, and the specific dissipation rate, ω, are
obtained by Eq. (11) and (12), respectively.

𝜕
𝜕𝑡 (𝜌𝑘) +

𝜕
𝜕𝑥𝑖 (

𝜌𝑘𝑢𝑖) =
𝜕
𝜕𝑥𝑗 (

Γ𝑘
𝜕𝑘
𝜕𝑥𝑗)

+ 𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘 (11)

𝜕
𝜕𝑡 (𝜌𝜔) +

𝜕
𝜕𝑥𝑖 (

𝜌𝜔𝑢𝑖) =
𝜕
𝜕𝑥𝑗 (

Γ𝜔
𝜕𝜔
𝜕𝑥𝑗)

+ 𝐺𝜔 − 𝑌𝜔 + 𝐷𝜔 + 𝑆𝜔 (12)

In these equations, G𝑘, represents the production of turbulent kinetic energy due to
velocity gradients, G𝜔 represents the production of ω, Γ𝑘 and Γ𝜔 represent the effective

DOI 10.18502/keg.v5i5.6925 Page 105



 
STARTCON19

diffusivity of k and ω, respectively. Y𝑘 and Y𝜔 represent the dissipation of k and ω due
to the turbulence. D𝜔 represents the term of crushed diffusion.

The constants of this model take the values given in Table 2.

TABLE 2: k-ω SST model constants.

𝜎𝑘,1𝜎𝑘,1𝜎𝑘,1 𝜎𝜔,1𝜎𝜔,1𝜎𝜔,1 𝜎𝑘,2𝜎𝑘,2𝜎𝑘,2 𝜎𝜔,2𝜎𝜔,2𝜎𝜔,2 𝑎1𝑎1𝑎1 𝛽𝑖,1𝛽𝑖,1𝛽𝑖,1 𝛽𝑖,2𝛽𝑖,2𝛽𝑖,2 𝜎∗∞𝜎∗∞𝜎∗∞
1.176 2.0 1.0 1.168 0.31 0.075 0.0828 1.0

𝜎∞𝜎∞𝜎∞ 𝜎0𝜎0𝜎0 𝛽∗∞𝛽∗∞𝛽∗∞ 𝑅𝛽𝑅𝛽𝑅𝛽 𝑅𝑘𝑅𝑘𝑅𝑘 𝑅𝜔𝑅𝜔𝑅𝜔 𝜁∗𝜁∗𝜁∗ 𝑀𝑡0𝑀𝑡0𝑀𝑡0

0.52 1/9 0.09 8.0 6.0 2.95 1.5 0.25

3.1. Computational Domain

The computational domain considered in the present study is shown in Fig. 1, following
the work of Wu et al. [17] and Wanderley et al. [15, 16]. A two-dimensional computational
domain was investigated for numerical analysis. The size of the computational domain,
shown in Fig. 1 was 400×200 points, where the external boundary was 120 diameters
from the body surface, following the work of Wanderley et al. [15, 16], with a steady two-
dimensional and uniform flow, sufficient to predict the flow mechanism of the present
problem.

Figure 1: (a) Computational domain; (b) Close-up of the mesh near the cylinder.

The origin of the coordinate system was located at the center of the oscillating
cylinder in the beginning of the numerical analysis, with x and y in the streamwise and
normal directions, respectively. The dimensions of the channel enclosing the cylinder to
simulate the mainstream flow were sufficiently large that the formation of flow vortices
near the body was not affected by the boundaries of the channel.

The whole computational domain is divided into two zones, viz., fixed mesh zone and
dynamic mesh zone. These two zones are separated by a circular interface 10 diameters
away from the cylinder. As of the boundary conditions, the flow comes from left to right,
so the inlet is located on the left side of the domain, where the entry velocity is specified,
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and the outlet is located in the right side. The cylinder is treated as a dynamic wall, with
six degrees of freedom, allowing it to move in the direction transverse to the flow, and
blocking it from moving either in the flow direction or to rotate. As it was already stated,
the cylinder is mounted under elastic supports, that means that a spring and damper
are included in the setup and kept constant as the velocity increases (Also increasing
Reynolds Number).

4. Results and Discussion

4.1. Grid Independence study

To verify the influence of the mesh size on the numerical results, three different grids
were tested for Reynolds number equal to 1000. The first grid tested had 400×150
points (coarse grid), the second grid had 400×200 points, and finally the third and finer
grid had 400×250 points. The effect of the grid refinement is negligible as no difference
is observed between the results.

Therefore, the grid with 400x200 points proved to be good enough for the present
investigation and was used in the entire investigation. Table 3 summarizes the Strouhal
number, drag, and lift coefficients obtained for Reynolds number equal to 1000 and the
three different grid refinement.

TABLE 3: Strouhal number, lift, and drag coefficients obtained for three different mesh refinements and
Re=1000.

Re C𝐷 C𝐿 St Grid

0.965 0.238 0.191 400x150

0.961 0.222 0.193 400x2001000

0.961 0.222 0.193 400x250

4.2. Numerical Results

The objective of the present investigation is to duplicate in accurate and reliable way,
the benchmarking experimental results obtained by Khalak and Williamson [4]. Thus,
the experimental setup considered throughout the numerical simulation was the same
as the experimental and also the samemass ratio of m*=2.4, damping ratio of ζ= 0.0045,
and reduced velocity varying from2.5 to 14, corresponding to Reynolds number variation
from 2000 to 12000.
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Fig. 2a shows the comparison between the numerical results obtained in the present
work for the amplitude of oscillation as a function of reduced velocity and experi-
mental data from Khalak and Williamson [4]. In this numerical simulation, all results
were obtained by increasing the reduced velocity step by step. As reduced velocity
increases, the amplitude of oscillation increases and reaches amaximum and then starts
decreasing. The agreement between the numerical results obtained in the present work
and the experimental results obtained in Khalak and Williamson [4] is good, considering
the struggles that numerical simulations have to reproduce experimental results on VIV.

Fig. 2b presents the vortex shedding frequency of the fixed cylinder, the frequency
of oscillation of the moving cylinder as functions of reduced velocity. The frequency is
approximately constant inside the lock-in region and increases with reduced velocity
outside the lock-in region. In Fig. 2a, the point of maximum amplitude of oscillation
corresponds to a reduced velocity of 5.2 and a frequency ratio of f=f𝑛=0.88, see Fig.
2b. This means that, at the peak, the frequency of vortex shedding is lower than the
natural frequency of the structure (in air). As the velocity of the flow is increased, the
amplitude decreases continuously up to a reduced velocity of 5.5 and frequency ratio
of f=f𝑛=0.98. The next point corresponds to a reduced velocity of 6.0 and a frequency
ratio of f=f𝑛=1.06. Now, the frequency of vortex shedding is greater than the natural
frequency of the structure, and there is a jump in amplitude shown in Fig. 2a. In the
subsequent points, increasing the reduced velocity makes the frequency ratio remain
approximately constant up to reduced velocity equal to 10.5.

Beyond this point, synchronization stops, the amplitude decreases drastically, and the
frequency of vortex shedding returns to the Strouhal frequency. In Fig. 2b, the frequency
of vortex shedding is given by Eq. (13).

𝑓𝑁 = √𝐾/(𝑚 + 𝑚𝑎) (13)

where

𝑚𝑎 = 𝜌(𝜋𝐷2/4)𝐶𝑎 (14)

and

𝐶𝑎 = 1 (15)

Here, D is the cylinder diameter and C𝑎 is a constant.

Fig. 3a was obtained for reduced velocities U*=2.5 at the initial branch (U*<4.0) of
the amplitude of oscillation curve of Fig. 2a. Fig. 3a presents the vorticity field around
the cylinder and Fig. 3b presents the time traces of the displacement of the cylinder.
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Figure 2: Results for the oscillating of a circular cylinder as a function of reduced velocity: (a) amplitude of
displacement, and (b) frequency of oscillation.

Fig. 3b shows that the displacement of the cylinder is almost inexistent to this velocity
ranges. Fig. 3a shows that one vortex is shed in each half cycle of oscillation, which is
compatible with the 2S mode of Williamson and Roshko [19] for the initial branch.

Fig. 3c represents the results for reduced velocities U*=5.5 at the upper branch
(4.0<U*<6.5) of the amplitude of oscillation curve of Fig. 2a. Fig. 3c shows that two
vortices are shed in each half cycle of oscillation, which is compatible with the 2P
mode, with the second vortex of each pair being much weaker than the first one. Fig.
3d shows that the displacement ratio of the cylinder is almost equal to 1, the maximum
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value for displacement of the cylinder, achieving good agreement with results from
Khalak and Williamson [4].

Fig. 3e was obtained for reduced velocities U*=8.0 at the lower branch (6.0<U*<10.5)
of the amplitude curve of Fig. 2a. Fig. 3e presents the vorticity field around the cylinder
while Fig. 3f presents the time traces for the displacement of the cylinder. It shows that
two vortices are shed in each half cycle of oscillation, which is compatible with the 2P
mode of Williamson and Roshko [19] the lower branch.

   

 

   

Figure 3: Results obtained for the vibrating circular cylinder of vorticity (top) and amplitude ratio (bottom)
for: (a-b) U*=2.5; (c-d) U*=5.5; and (e-f) U*=8.0.

5. Conclusion

The present work shows good agreement between the numerical simulations, which
used the k-ω SST turbulence model, and experimental results obtained by Khalak and
Williamson [4], for the specific case of an elastically mounted cylinder under vortex
induced vibration effects.

The OpenFOAM code proved to be reliable when working with the k-ω SST tur-
bulence model, allowing for other approach of the VIV enhancement for different
geometries, in future research.

The numerical results show that the frequency of vortex shedding is synchronized
with the natural frequency of the cylinder, for a deep range of reduced velocities
(5<U*<10.5) whiles synchronized. The cylinder reaches maximum amplitude ratios of
nearly one, for U*=5.2, and over 0.6 for most of the synchronization zone.

In reduced velocities higher than 10.5, the synchronization stops and makes the
oscillation of the body almost null. The frequency of vortex shedding, from this point
on, is approximately the Strouhal frequency once again, as it was from U*<5

DOI 10.18502/keg.v5i5.6925 Page 110



 
STARTCON19

Acknowledgements

This work was supported with Portuguese national funds by FCT - Foundation for Sci-
ence and Technology within the Grant ERANETMED/0004/2014 (Project ID eranetmed_
nexus-14-044) and the UID/ECI/04082/2013 project, and, within the research unit C-
MADE, Centre of Materials and Building Technologies (CIVE-Central Covilhã-4082),
University of Beira Interior, Portugal.

References

[1] C. C. Feng, “The measurement of vortex induced effects in flow past stationary
and oscillating circular and D-section cylinders,” University of British Columbia,
Vancouver, Canada, 1968.

[2] T. Sarpkaya, “Vortex induced oscillations - A selective review,” J. Appl. Mech., 46,
pp. 241–258, (1979).

[3] P. W. Bearman, “Vortex shedding from oscillating bluff bodies,” Annu. Rev. Fluid

Mech., 16, pp. 195–222, (1984).

[4] A. Khalak and C.H.K. Williamson, “Dynamics of a hydroelastic cylinder with very low
mass and damping,” J. Fluids Struct., 10, pp. 455–472, (1996).

[5] A. Khalak and C.H.K. Williamson, “Fluid forces and dynamics of a hydroelastic
structure with very low mass damping,” J. Fluids Struct., 11, pp. 973–982, (1997).

[6] A. Khalak and C.H.K. Williamson, “Motions, Forces and Mode Transitions in Vortex-
Induced Vibrations At Low Mass-Damping,” J. Fluids Struct., 13, no. 7–8, pp. 813–851,
(1999).

[7] R. D. Blevins and C. S. Coughran, “Experimental Investigation of Vortex-Induced
Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds
Number,” J. Fluids Eng., 131, no. 10, p. 101202, (2009).

[8] M. Bernitsas, K. Raghavan, Y. Ben-Simon, and E. Garcia, “VIVACE (Vortex Induced
Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and
Renewable Energy From Fluid Flow,” J. Offshore Mech. Arct. Eng., 130, no. 4, p.
41101, (2008).

[9] J. Lee, C. Chang, N. Xiros, and M. Bernitsas, “Integrated power take-off and virtual
oscilator system for the vivace converter: Vck system identification,” Proc. ASME

2009 Int. Mech. Eng. Congr. Expo., IMECE 2009, pp. 1–7, (2009).

DOI 10.18502/keg.v5i5.6925 Page 111



 
STARTCON19

[10] C. Chang, R. Ajith Kumar, and M. Bernitsas, “VIV and galloping of single circular
cylinder with surface roughness at 30000≤Re≤120000,” Ocean Eng., 38, no. 16, pp.
1713–1732, (2011).

[11] C. Chang and M. Bernitsas, “Hydrokinetic Energy Harnessing Using the Vivace
Converter With Passive Turbulence Control,” in Proc. ASME 2011 Int. Conf. Ocean.

Offshore Arct. Eng., 2011, pp. 1–10.

[12] C. Chang andM. Bernitsas, “Envelope of power harvested by a single-cylinder vivace
converter,” in Proc. ASME 2015 34th Int. Conf. Ocean. Offshore Arct. Eng., 2015.

[13] E. Kim and M. Bernitsas, “Performance prediction of horizontal hydrokinetic energy
converter using multiple-cylinder synergy in flow induced motion,” Appl. Energy,
170, pp. 92–100, (2016).

[14] A. Chizfahm, E. Azadi Yazdi, and M. Eghtesad, “Dynamic modelling of vortex induced
vibration wind turbines,” Renew. Energy, 121, no. 121, pp. 632–643, (2018).

[15] J. Wanderley, G. Souza, S. Sphaier, and C. Levi, “Vortex-induced vibration of
an elastically mounted circular cylinder using an upwind TVD two-dimensional
numerical scheme,” Ocean Eng., 35, pp. 1533–1544, (2008).

[16] J. Wanderley, S. Sphaier, and C. Levi, “A two-dimensional numerical investigation
of the hysteresis effect on vortex induced vibration on an elastically mounted rigid
cylinder,” J. Offshore Mech. Arct. Eng., 134, p. 21801, (2012).

[17] W. Wu, M. M. Bernitsas, and K. Maki, “RANS Simulation Versus Experiments of Flow
Induced Motion of Circular Cylinder With Passive Turbulence Control at 35,000 &lt;
RE &lt; 130,000,” J. Offshore Mech. Arct. Eng., 136, no. 4, p. 041802, (2014).

[18] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering
applications,” AIAA J., 32, no. 8, pp. 1598–1605, (1994).

[19] C. H. K. Williamson and A. Roshko, “Vortex formation in the wake of an oscillating
cylinder,” J. Fluids Struct., 2, no. 4, pp. 355–381, (1988).

DOI 10.18502/keg.v5i5.6925 Page 112


	Introduction
	Vortex Induced Vibrations
	Problem Description
	Computational Domain

	Results and Discussion
	Grid Independence study
	Numerical Results

	Conclusion
	Acknowledgements
	References

