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Abstract
The article shows the application of a neural network for modeling coke quality
indicators Coke Reactivity Index (CRI) and Coke Strength after Reaction (CSR). Two
optimization methods were used to train the neural network. The influence of the
number of neurons on the simulation results was studied. The difference between
experimental and calculated data on average does not exceed 2 %. The conclusion is
made about the prospects of using a neural network to predict the values of CRI and
CSR of coke.
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1. Introduction

An important task of metallurgical coke production is to obtain coke of a given quality.
It is known (see, for example, [1]) that metallurgical coke can be characterized by two
parameters: CRI and CSR. At present, there is no reliable model for calculating CRI
and CSR based on the characteristics of charge materials and coking mode. In this
regard, studies in the direction of establishing the dependence of coke quality on the
characteristics of the charge are relevant.

In studies in this direction, regression and correlation analysis methods are often
used (see, for example, [2]). In [2], a linear regression dependence between CRI and
CSR was obtained with a correlation coefficient of 0.97; the determination coefficients
between CRI and the volume fraction of internite, vitrinite reflection index, hygroscopic
humidity are in the range 0.26 – 0.27, which indicates a complex mutual influence of
the factors considered.

It can be concluded that the problem of determining the characteristics of the quality
of coke CRI and CSR can be attributed to an insufficiently formalized problem in which
there are many influencing factors (for example, petrographic composition, degree of
metamorphism, etc.), which are not always strictly possible to take into account.
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TABLE 1: Charge composition and results of CRI and CSR determination

Component Share, % (below the number of months)

1 2 3 4 5 6 7 8 9 10

Component 1 3 7,2 8,9 10,2 10,4 15,8 17,4 8,6 7,3 2,2

Component 2 43,4 39,4 38,0 38,9 35,1 26,4 30,7 36,9 36,8 42,0

Component 3 5,8 5,3 0,7 7,7 17,1 7,5 5,6 5,6 1,2 10,5

Component 4 9,9 5,8 16,0 9,0 10,5 20,5 8,5 11,0 12,1 6,8

Component 5 0,0 4,6 0,0 0,0 0,0 0,0 4,3 3,5 5,8 2,6

Component 6 19,1 24,2 13,0 9,1 5,0 3,4 1,3 8,8 6,1 11,7

Component 7 0,0 0,0 3,5 10,5 8,6 6,1 10,9 7,1 8,4 3,7

Component 8 8,8 7,9 6,5 2,3 2,9 6,4 14,0 14,5 18,3 16,5

Component 9 6,1 1,6 9,4 8,5 6,4 9,9 3,3 0,0 0,0 0,0

Component 10 3,9 4,0 4,0 3,8 4,0 4,0 4,0 4,0 4,0 4,0

CRI, % 56,2 56,2 55,6 54,6 55,9 56,1 54,9 56,0 56,1 55,1

CSR, % 30,2 30,2 30,3 30,6 30,2 30,5 30,5 30,2 30,2 30,4

The solution of insufficiently formalized problems is possible using artificial neural
networks (see, for example, [3]). This approach was used in [2] to describe the quality
of coke and in [4] to analyze the yield of chemical coking products.

To determine the weight matrices of a neural network, training examples are needed
– the charge parameters and the values of CRI and CSR obtained for them. The data for
the study and the results of the determination of CRI and CSR are provided by industrial
enterprise and are shown in tables 1, 2.

2. Results and Discussions

A two-layer artificial neural network (TLANN) was used to simulate CRI and CSR, the
structure of which is shown in Fig.1. The logistic function was used as a compressive
function A two-layer artificial neural network (TLANN) was used to simulate CRI and
CSR, the structure of which is shown in Fig. 1. The logistic function was used as a
compressive function 𝐹 (𝑥) = 1

1+𝑒−𝑥 [5].

The number of neurons in the outer layer was chosen to be equal to two in the
number of coke quality parameters CRI and CSR. The quantity in the inner (hidden)
layer varied over a wide range to determine the effect of this factor on the simulation
results.
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TABLE 2: Characteristics of the charge

Component Quality indicator,%

Ad Vdaf y Sd Vt Sv I Ro,r ΣOK Io

Component 1 7,5 38,3 18,4 0,46 88 2 10 0,811 11,8 0,222

Component 2 8,0 36,7 28,2 0,56 86 2 12 0,935 13,0 0,265

Component 3 9,4 24,8 14,6 0,32 48 10 42 1,177 48,7 0,286

Component 4 7,8 20,9 11,3 0,29 57 11 32 1,383 39,1 0,327

Component 5 8,4 18,6 7,3 0,36 53 9 38 1,506 44,0 0,205

Component 6 9,3 18,5 8,9 0,34 51 10 39 1,464 45,8 0,241

Component 7 11,2 18,8 11,3 0,23 67 5 28 1,539 31,0 0,159

Component 8 7,9 20,1 10,8 0,37 50 11 38 1,357 45,7 0,251

Component 9 11,5 27,5 9,3 0,58 56 5 39 1,050 42,1 0,100

Component 10 0,3 19,1 0 4,70 99 0 1 2,340 0,5 0,878

Figure 1: TLANN structure

10 training examples (according to the number of months from table 1), in each of
which there were 10 parameters from the table.2 taking into account the content of the
charge components.

To improve the quality of the simulation, the original data and results were prepro-
cessed so that they were in a single range, usually from 0 to 1.

Themethod of error back propagation (see, for example, [5]) was used to train DEANS,
in which the functional of the form was minimized

𝐸(𝑤) = 1
2

𝑇

∑
𝑡=1

𝑛

∑
𝑙=1

(𝑦𝑙𝑡 − 𝑑𝑙𝑡)
2 → min

Here T - the number of training examples to which the given result corresponds 𝑑𝑙𝑡
(these are the CRI and CSR values from the table 1); n – number of neurons in the output
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layer (n=2); 𝑦𝑙𝑡- the output of the neural network during its training (after training should
be close to the values of CRI and CSR from the table.1).

The weight matrices were the minimization parameters w(1) and w(2) (see fig.1). The
search for elements of the neural network weight matrices was carried out using two
methods of unconditional optimization: the method of the steepest descent and the
method of conjugate gradients (see, for example, [6]). In both approaches, it is necessary
to determine partial derivatives of the functional E(w) on the elements of the weight
matrices 𝑤(1)

𝑖𝑗 and 𝑤(2)
𝑖𝑗 . The following expressions for partial derivatives were obtained

𝜕𝐸
𝜕𝑤(2)

𝑗𝑘
=

𝑇

∑
𝑡=1

(𝑦
(2)
𝑘𝑡 − 𝑑𝑘𝑡) ⋅ (1 − 𝐹 (𝑆 (2)

𝑘𝑡 )) ⋅ 𝐹 (𝑆
(2)
𝑘𝑡 ) ⋅ 𝑦

(1)
𝑗𝑡 , 𝑗 = 1...𝑛, 𝑘 = 1...𝑝. (1)

𝜕𝐸
𝜕𝑤(1)

𝑖𝑗
=

𝑇

∑
𝑡=1

𝑝

∑
𝑙=1

(𝑦
(2)
𝑙𝑡 − 𝑑𝑙𝑡) ⋅ (1 − 𝐹 (𝑆

(2)
𝑙𝑡 )) ⋅ 𝐹 (𝑆

(2)
𝑙𝑡 )

⋅ (1 − 𝐹 (𝑆
(1)
𝑗𝑡 )) ⋅ 𝐹 (𝑆

(1)
𝑗𝑡 ) ⋅ 𝑥𝑖𝑡 ⋅ 𝑤

(2)
𝑗𝑙 .

𝑖 = 1...𝑚, 𝑗 = 1...𝑛.

(2)

Formulas (1)-(2) determine partial derivatives of the target function E (w) by the weights
of neurons of the second (external) and first (hidden) layers.

The symbols used here are

𝑆 (1)
𝑗𝑡 =

𝑚

∑
𝑖=1

𝑥𝑖𝑡 ⋅ 𝑤
(1)
𝑖𝑗 𝑗 = 1..𝑛; 𝑦(1)𝑗𝑡 = 𝐹(𝑆 (1)

𝑗𝑡 ) = 𝐹
(

𝑚

∑
𝑖=1

𝑥𝑖𝑡 ⋅ 𝑤
(1)
𝑖𝑗 )

.

𝑆 (2)
𝑙𝑡 =

𝑛

∑
𝑗=1

𝑦(1)𝑗𝑡 ⋅ 𝑤
(2)
𝑗𝑙 𝑙 = 1..𝑝; 𝑦(2)𝑙𝑡 = 𝐹(𝑆 (2)

𝑙𝑡 ) = 𝐹
(

𝑛

∑
𝑗=1

𝑦(1)𝑗𝑡 ⋅ 𝑤
(2)
𝑗𝑙 )

.

Corrections for weights, for example, in the method of the quickest descent at the
step with the number are determined by the relations [6] (𝜂- parameter of the method)

Δ𝑤(1)𝜏
𝑖𝑗 = −𝜂 ⋅ 𝜕𝐸

𝜕𝑤(1)
𝑗𝑘
; 𝑤(1)𝜏+1

𝑖𝑗 = 𝑤(1)𝜏
𝑖𝑗 +Δ𝑤(1)𝜏

𝑖𝑗 ; Δ𝑤(2)𝜏
𝑗𝑘 = −𝜂 ⋅ 𝜕𝐸

𝜕𝑤(2)
𝑗𝑘
; 𝑤(2)𝜏+1

𝑗𝑘 = 𝑤(2)𝜏
𝑗𝑘 +Δ𝑤(2)𝜏

𝑗𝑘 .

Calculations Δ𝑤𝜏
𝑖𝑗 are terminated if Δ𝑤𝜏

𝑖𝑗 become less than the specified accuracy of
calculations.

The result of TLANN application is expressed by matrix transformations

( 𝑥1 ... 𝑥𝑚 ) ⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑤(1)
11 ... 𝑤(1)

1𝑛

⋮ ⋱ ⋮

𝑤(1)
𝑚1 ... 𝑤(1)

𝑚𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑆 (1)
1

⋮

𝑆 (1)
𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐹 (𝑆
(1)
1 )

⋮

𝐹 (𝑆
(1)
𝑛 )

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑦(1)1

⋮

𝑦(1)𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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and

( 𝑦(1)1 ... 𝑦(1)𝑛 ) ⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑤(2)
11 ... 𝑤(2)

1𝑝

⋮ ⋱ ⋮

𝑤(2)
𝑛1 ... 𝑤(2)

𝑛𝑝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑆 (2)
1

⋮

𝑆 (2)
𝑝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐹 (𝑆
(2)
1 )

⋮

𝐹 (𝑆
(2)
𝑝 )

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑦(2)1

⋮

𝑦(2)𝑝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

TABLE 3: The results of calculations in the framework of the fastest descent method

№ of month Exper-
ience

Exper-
ience

7 neurons in the 1st layer 10 neurons in the 1st layer

model error, % расчет error, %

CRI, % CSR, % CRI, % CSR, % CRI, % CSR, % CRI, % CSR, % CRI, % CSR, %

1 56,20 30,20 55,72 30,21 0,85 0,03 55,8 30,1 0,71 0,33

2 56,20 30,20 56,96 29,08 1,35 3,71 57,24 28,8 1,85 4,64

3 55,60 30,30 55,43 30,54 0,31 0,79 55,27 30,69 0,59 1,29

4 54,60 30,60 55,44 30,56 1,54 0,13 55,23 30,79 1,15 0,62

5 55,90 30,20 55,66 30,38 0,43 0,60 55,46 30,61 0,79 1,36

6 56,10 30,50 56,57 29,60 0,84 2,95 56,54 29,69 0,78 2,66

7 54,90 30,50 56,59 29,52 3,08 3,21 56,9 29,27 3,64 4,03

8 56,00 30,20 54,9 30,99 1,96 2,62 54,82 31,03 2,11 2,75

9 56,10 30,20 54,42 31,42 2,99 4,04 54,35 31,43 3,12 4,07

10 55,10 30,40 55,02 30,83 0,15 1,41 55,14 30,67 0,07 0,89

Average 1,35% 1,95% 1,48% 2,26

The results of calculations together with experimental data (table 1) for some opti-
mization methods are given in tables 3, 4. From this data, it can be concluded that the
conjugate gradient method gives the best average accuracy of the calculations for CRI
and CSR. The maximum error when using the steepest descent method is 4.64%, and
the conjugate gradient method is 2.66%. Increasing the number of neurons in the inner
layer from 7 to 10 leads to an increase in the average error of calculations for CRI and
CSR.

A visual representation of the consistency of calculation results CRI and CSR for the
number of neurons in the inner layer equal to 7 shown in Fig. 2, 3. From these data, it can
be concluded that the TLANN used allows a satisfactory description of the experimental
data. for the number of neurons in the inner layer equal to 7 shown in Fig. 2, 3. From
these data, it can be concluded that the TLANN used allows a satisfactory description
of the experimental data. The calculations were performed using a own C# program.

DOI 10.18502/keg.v5i3.6753 Page 25



 
SEC 2019

TABLE 4: Results of calculations in the framework of the conjugate gradient method

№ of month Exper-
ience

Exper-
ience

7 neurons in the 1st layer 10 neurons in the 1st layer

model error, %

CRI, % CSR, % CRI, % CSR, % CRI, % CSR, % CRI, % CSR, % CRI, % CSR, %

1 56,20 30,20 55,89 30,06 0,55 0,46 55,99 29,92 0,37 0,93

2 56,20 30,20 56,57 29,44 0,66 2,52 56,44 29,52 0,43 2,25

3 55,60 30,30 55,43 30,56 0,31 0,86 55,41 30,57 0,34 0,89

4 54,60 30,60 55,12 30,87 0,95 0,88 55,05 30,96 0,82 1,18

5 55,90 30,20 55,3 30,72 1,07 1,72 55,25 30,81 1,16 2,02

6 56,10 30,50 56,12 30,01 0,04 1,61 56,21 30,01 0,20 1,61

7 54,90 30,50 56,28 29,8 2,51 2,30 56,36 29,77 2,66 2,39

8 56,00 30,20 55,24 30,68 1,36 1,59 55,15 30,74 1,52 1,79

9 56,10 30,20 55,1 30,79 1,78 1,95 55,08 30,76 1,82 1,85

10 55,10 30,40 55,62 30,28 0,94 0,39 55,73 30,11 1,14 0,95

Average 1,02% 1,43% 1,05% 1,59%
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Figure 2: Comparison of experimental data and results of CRI calculations. Diamonds-experimental data;
squares - results of calculations by the method of the fastest descent; triangles - results of calculations by
the method of conjugate gradients

Figure 3: Comparison of experimental data and results of CSR calculations. Diamonds-experimental data;
squares - results of calculations by the method of the fastest descent; triangles - results of calculations by
the method of conjugate gradients
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