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Lattice structures are used in a variety of high-value engineering applications; for
example, in automobile, aerospace and biomedical applications, due to their light
weight, high specific strength, stiffness, heat transfer control and energy absorption.
Additive Manufacturing (AM) technologies, such as Selective Laser Melting (SLM),
offer radical net-shape manufacturing solutions for metallic structures directly from
digital data. The prediction of AM lattice structure mechanical properties prior to
manufacture is both cost and time-consuming; particularly as existing models do not
readily accommodate the effects of manufacturing defects and lattice node geometry
on column buckling. The critical buckling load of columns was algebraically and
numerically simulated for a full Design of Experiments (DOE) of independent variables,
including column length, column radius, node radius and material type. This simulation
data quantifies the effect of independent variables on critical buckling load and
demonstrates the limitations of algebraically prediction. This research can be extended
to allow the simulation of the load carrying capacity of entire lattice structures; and to
accommodate the effect of manufacturing variation on the associated load carrying
capacity of AM lattice structures.

Column buckling, Numerical simulation of column, Analytical analysis of
column, Selective Laser Melting (SLM), Electron Beam Melting (EBM), Ti-6Al-4V

According to the Additive Manufacturing Technology Standard F2792-10, additive man-
ufacturing is the “process of joining materials to make objects from 3D model data,
usually layer upon layer, as opposed to subtractive manufacturing methodologies, such
as traditional machining” (1). Additive Manufacturing (AM) provides various industrial
benefits, including the ability to manufacture lightweight lattice structures of high com-
plexity with low lead time and low environmental impact (2).

In this work, lattice structures consist of numerous cylindrical elements connected
by spherical nodes (Figure 1). A column is a cylindrical compression member, which is
unable to support the applied compressive load when the critical buckling load, P, is
exceeded (3). Buckling is an abrupt, large deformation failure, where that column had
exhibited minimal deformation before the compressive load was increased (4).
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Columns can be divided into three classifications: short columns, intermediate
columns and slender columns. These classifications are dependent on the column slen-
derness ratio, S;, which is a relationship between the column length, L, and radius of
gyration, r (Equation 1) (7). The classification of columns indicates whether structure
fails due to material reasons, buckling or both (3).

S, = é[mm/mm], r= \I%[mm‘*/mmz] (1)
Short columns fail materially by stress exceeding the yield strength of the material (5,
6); this occurs when column length is very small as compared to radius of gyration. An
intermediate column has a slenderness ratio between that of a short or slender column,
and fails by a combination of buckling and yield (5). A slender column fails structurally
by elastic buckling at stress values significantly lower than the yield strength (5, 6).

The prediction of critical buckling load P, for columns with variable dimensions is
essential to economical design of AM lattice structures, and can be predicted numeri-
cally or analytically. This paper will compare both numerical and analytical predictions
of P, to provide a preliminary step towards the automated analysis of the mechani-
cal properties of AM lattice structures. It presents the critical buckling load of columns
for sizes relevant to AM lattice design. Specifically, this research provides insight into
the relative merit of analytic and numerical approaches for estimating critical buckling
loads, as well as providing design data for the critical buckling load for range of cases
relevant to AM design.

2.1 Numerical Simulation

A full factorial design of experiments (DOE) based on geometry relevant to AM lattice
design has enabled six hundred columns to be simulated with varying column length,
sphere radius and column radius (Figure 3). This data is used to evaluate the difference
in P, prediction for analytical and numerical results; as well as providing data for AM
lattice design.

A 3D numerical column model, with cylindrical structure and spherical nodes was
designed to simulate a column in response to simple loading (Figure 2). A load was ap-
plied into the centre of the upper sphere to measure critical buckling load of the column
using free rotation end constraints (Table 2). A custom Matlab script was developed to
allow automated simulation (within Abaqus) of P, for dimensions of column radius,
column length and sphere radius, that vary according to the DOE (Table 1). The material
used for all simulations was Ti-6Al-4V.
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Figure 1: Image of SLM manufactured AlSi12Mg Lattice Structure (10).

Figure 2: A 3D COLUMN SAMPLE WITH TWO SPHERES, WHERE [, = LENGTH OF COLUMN, R, = RADIUS OF
SPHERE AND R, = RADIUS OF COLUMN.

2.2 Analytical prediction of P,

The Euler buckling formula predicts P, for a slender compression member (Equation
2); based on the Modulus of elasticity, £, second moment of area, /, column length, L,
and length factor, k (7). The length factor of a column varies according to the boundary
conditions: both ends fixed, both ends pinned, fixed and pinned, and fixed and free

(Table 1) (9).
2
Py = )
(kL)

Euler provides rapid prediction of P, however there exist several challenges to
the use of Euler in AM lattice structural design. Euler Buckling is limited to scenarios
with straight columns with length that is significantly larger than the column radius (8).
However, practically manufactured AM column structures often include manufacturing
effects that mean columns are not perfectly straight or are intentionally in the short
or intermediate range. Furthermore, the connection between columns is achieved by
spherical nodes, which introduce stress concentration and change in effective length
that conflict with the assumptions of Euler and affect predictions of P,,. This research
provides insight into the relative merit of analytic and numerical approaches for esti-
mating critical buckling loads for geometries relevant to AM design.
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Range
Parameter
Min Max Step
Length of Column (L) 0.5 mm 10 mm 0.5 mm
Radius of Sphere (Rs) 0.125 mm L:C mm 0.2 mm
Radius of Column (R¢) 0.125 mm %C mm 0.2mm

TasLE 1: SUMMARY OF ALLOWABLE RANGES FOR VARYING L, R, R.. NOTE: R;>R..

Buckled
Shape
Theoertical 0.5 0.7
Effective
Length
0.65 0.8 1.0 2.0 2.10 1.2
Recommended
s = Rotation fixed, translation fixed T = Rotation free, translation fixed
Symbols For
End Conditons )? = Rotation free, translation fixed 5 = Rotation fixed, translation fixed

TaBLE 2: Effective length of a single column with different end boundaries (7).

Numerical simulation and analytical prediction of P, was completed for the DOE of
(Table 1). Data for smm column length is presented in Figure 3, and indicates that the
results are divided into three sections: low, medium and high error percentage.

Low error percentage: The numerical and algebraic prediction of P, show low error
when the column radius and sphere radius are equal (Figure 3a). The error percentage
increases from approximately 0.2% to 2.0% as the column radius increases from the
lowest to highest radius. This increasing error corresponds to a reduction in slenderness
ratio, which is contradictory to the assumptions of Euler buckling model.

Medium error percentage: A medium error percentage of approximately 2% to 30%
occurs when the sphere radius exceeds the column radius, and is less than approx-
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imately fifteen percent of the column length (Figure 3b). This increase is due to the
effect of the node spheres introducing stress concentration and increasing local resis-
tance to buckling, thereby contradicting the assumptions of the Euler buckling model.

High error percentage: The largest error percentage occurs when the sphere radius
larger than column radius and exceeds approximately fifteen percent of the column
length (Figure 3c). The error percentages increase from approximately 30% to over
300% as sphere radius increased.

Notwithstanding the research that has been undertaken of the limitations of analytical
prediction of P, the limitations documented in this research occurred when minimum
column radius and maximum sphere radius applied. This limitation produces a large er-
ror percentage between numerical analysis and analytical analysis when sphere radius
is large. The prediction of mechanical properties of columns with variable column ra-
dius, sphere radius and column length before fabrication, is attempting to reduce the
cost and time consumption of fabrication. This research is first to allow simulation of
entire Lattice Structures. In summary:

- Simulation of columns under varying geometric conditions is important to enable
the robust manufacture of lattice structures, reduce time consumption and cost.

+ The numerical simulation model of columns was a cylinder column with two spher-
ical nodes generated into vertex and bottom of column.

- The numerical simulation was running a varying range of spherical node radius,
column radius and column length automatically (Table 1).

- Analytical analysis was used to validate the results of numerical simulation models
with set dimensions.

- The error percentage between numerical and analytical estimates of P, show three
classifications: low error percentage (approximately less than 2%), medium error
percentage (approximately from 2% to 30%), and high error percentage (from 30%
to 300%).

- These errors are consistent with geometric effects (such as stress concentrations,
local stiffening and low slenderness) that are contradictory to the fundamental as-
sumptions of the Euler buckling model.

« This outcome provides insight on the applicability of analytic and numerical ap-
proaches for estimating critical buckling loads within AM lattice structures, as well
as providing design data for the critical buckling load for range of cases relevant to
AM design.
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Length of Column Constant =5 (mm)

©&———© Numerical (FEA) Results
“+——— Analytical Analysis Results

Buckling Load (N)
NO = N W & 0 O

Radius of Column (mm) Radius of Sphere (mm)

Percentage Error for Length of Column =5 (mm)
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Percentage Error (%)

0.5

Radius of Column (mm)

o Radius of Sphere (mm)

Figure 3: a) Data of numerical and analytical predation of P,; b) percentage error between numerical and
analytical predation of P,. Both a and b have column length of 5 mm. (1) Low error percentage: radius of
column equal to radius of sphere; (2) Medium error percentage: radius of sphere less than approximately
fifteen percent of column length and radius of column variable; (3) High error percentage: radius of sphere
exceeds approximately fifteen percent of column length and radius of column variable.
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