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Abstract
Composite materials have been investigated elsewhere. Most of the studies are based
on experimental results. This paper reports a numerical study of elasticity modulus
of binary fiber composite materials. In this study, we use binary fiber composite
materials model which consists of materials of types A and B. The composite is
simplified into compound of non-interacting parallel sub-fibers. Each sub-fiber is
modeled as N𝑠 point of masses in series configuration. Two adjacent point of mass
is connected with spring constant k (related and proportional to Young Modulus E),
where it could be k𝐴𝐴, k𝐴𝐵, or k𝐵𝐵 depend on material type of the two point of masses.
Three possible combinations of spring constant are investigated: (a) [k𝐴𝐵 < min(k𝐴𝐴,
k𝐵𝐵)], (b) [min(k𝐴𝐴, k𝐵𝐵) < k𝐴𝐵 < max(k𝐴𝐴, k𝐵𝐵)], and (c) [max(k𝐴𝐴, kBB) < k𝐴𝐵]. The
combinations are labeled as composite type I, II, and III, respectively. It is observed
that only type II fits most the region limited by Voight and Reuss formulas.
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1. Introduction

One of the important things in studies of composite materials is the relationship
between mechanical properties of the composites with that of its components.
Although many studies on composite materials are based on experimental results,
but theoretical or numerical studies on mechanical properties of composites are also
important.
This study is a numerical study of elasticity modulus of binary fiber composite mate-

rials, i.e. binary composite materials. In the binary composite model used, two adjacent
point of mass is connected with spring constant k (related and proportional to Young
Modulus E). This study focuses on the relationship between mechanical properties of
the composites with that of its components through analysis on spring constant k.
Previously, binary composite materials have been discussed in 3-d experiment [1]

and 2-d simulated based on granular particles [2], where themixture could be homoge-
nously dispersed [1] or the components can still be differed [3]. A model of binary
composite materials are proposed in this work and compared to the Voight and Reuss
formulas, which has been common as benchmark in studying composite models [4].
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Figure 1: (a) A composite fiber with cross section A, mass M, and length L. (b) A bundle of N𝑝 paralel
non-interacting sub fibers. (c) Each sub-fiber consists of N𝑠 point masses and N𝑠–1 springs.

2. Theory

A composite fiber can be modeled as a bundle of N𝑝 parallel non-interacting sub-fibers
as shown in Figure 1, where each sub-fiber consists of serial arrangements of point
masse and spring systems.
In sub-fiber j with mass m𝑗 there are N𝑠 point masses and N𝑠–1 springs. Spring with

spring constant k𝑖,𝑖+1 and length l𝑖,𝑖+1 connects point masses m𝑖 and m𝑖+1.
Mass of the whole composite fiber is

𝑀 =
𝑁𝑝

∑
𝑗=1

𝑚𝑗 =
𝑁𝑝

∑
𝑗=1

𝑁𝑠

∑
𝑖=1

𝑚𝑗𝑖 (1)

with m𝑖𝑗 is point mass i in sub-fiber j.
Supposed that the composite fiber of material X has elastic modulus E𝑋 with relation

between stress F, strain ΔL, initial length L, and cross section A.

𝐹
𝐴 = 𝐸X

Δ𝐿
𝐿 (2)

and Hooke’s law for elastic system

𝐹 = 𝑘XΔ𝐿, (3)

then a relation can be derived

𝑘X = 𝐸X
𝐴
𝐿. (4)

Spring constant of fiber of material X is constructed from parallel arrangement of
sub-fibers with spring constant k𝑗

𝑘X =
𝑁𝑝

∑
𝑗=1

𝑘𝑗 = 𝑁𝑝𝑘𝑗 (5)
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Material Elastic
modulus

Spring
constant

Type of connected
point masses

Lennard-Jones
(12,6) constants

m𝑖 m𝑖+1

A E𝐴 k𝐴𝐴 A A 𝜀𝐴−𝐴, 𝜎𝐴−𝐴
B E𝐵 k𝐵𝐵 B B 𝜀𝐵−𝐵 , 𝜎𝐵−𝐵
Composite E𝑐𝑜𝑚𝑝 k𝐴𝐵 =k𝐵𝐴 A B 𝜀𝐴−𝐵 , 𝜎𝐴−𝐵

B A

T˔˕˟˘ 1: Spring constants connecting two adjacent point masses, the elastic modulus, and Lennard-Jones
(12,6) constants.

or

𝑘𝑗 =
𝑘X
𝑁𝑝

. (6)

This k𝑗 in a sub-fiber j is built of serial arrangement of spring constants k𝑖,𝑖+1 which
connects point masses i and i+1

1
𝑘𝑗

=
𝑁𝑠−1

∑
𝑖=1

1
𝑘𝑖,𝑖+1

= 𝑁𝑠 − 1
𝑘𝑖,𝑖+1

(7)

or

𝑘𝑖,𝑖+1 = (𝑁𝑠 − 1) 𝑘𝑗 . (8)

Substituting Equation 7 into Equation 9 will give

𝑘𝑖,𝑖+1 =
(𝑁𝑠 − 1)

𝑁𝑝
𝑘X. (9)

In this work only binary composite is considered, e.g. materials A and B. Three types
of spring constants would be sufficient for the binary composite system k𝐴𝐴, k𝐴𝐵, and
k𝐵𝐵, where each spring constant connects point masses of types A-A, A-B (or B-A),
and B-B, respectively. Table 1 give clearer picture of relation between spring constants
k𝑖,𝑖+1 and materials composing the composite fiber.
The spring constant k𝑖,𝑖+1 can be considered as approximation of Lennard-Jones

(12,6) potential [ Jones, 1924] about its separation distance r𝑚 which producesminimum
potential. The potential is commonly expressed as

𝑉LJ = 4𝜀 [(
𝜎
𝑟 )

12
− (

𝜎
𝑟 )

6

] = 𝜀 [(
𝑟𝑚
𝑟 )

12
− 2(

𝑟𝑚
𝑟 )

6

] , (10)

where 𝜀 is the depth of potential well, 𝜎 is the finite distance at which the inter-particle
potential is zero, and r is distance between a pair of atoms or molecules. Equation 10
can be approximated using
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𝑉LJ ≈ 𝑉LJ|𝑟=𝑟𝑚
+ 𝑑𝑉LJ

𝑑𝑟 |𝑟=𝑟𝑚
(𝑟 − 𝑟𝑚) +

𝑑2𝑉LJ
𝑑𝑟2 |𝑟=𝑟𝑚

(𝑟 − 𝑟𝑚)2

2! , (11)

which produces

𝑉LJ ≈ −𝜀 + 36𝜀
𝑟2𝑚

(𝑟 − 𝑟𝑚)2 . (12)

Position r = r𝑚 can be chosen as local coordinate for equilibrium position and by shifting
potential reference, so that Equation 12 can be adjusted to

𝑉 = 36𝜀
𝑟2𝑚

𝑟2 = 1
2𝑘𝑖,𝑖+1𝑟

2 (13)

with r𝑚 = 21/6𝜎. Then, it can be obtained that

𝑘𝑖,𝑖+1 =
72𝜀
𝑟2𝑚

= 72𝜀
21/3𝜎2 . (14)

Value of 𝜀 and 𝜎 for pair of atoms, molecules, or cluster of molecules are already
common [5-7]. Equations 10-14 are shown only for showing that it is possible to obtain
k𝐴𝐴, k𝐴𝐵, and k𝐵𝐵 based on materials molecular interactions. In this work values of k𝐴𝐴
and k𝐵𝐵 will be proportional to E𝐴 and E𝐵 according to Equation 4 and k𝐴𝐵 will be a
adjustable parameter.
Concentration of composite materials is defined as

𝑐 = 𝑁B
𝑁A +𝑁B

, (15)

which means that c = 0 is for pure material of type A, while c = 1 is for pure material
of type B.

3. Results and Discussion

Configurations of composite materials with N𝑝 = 1 and N𝑠 = 2–4 are given in Table 2,
which shows that higher value of N𝑠 will give smoother values of various concentration
c. Probable occurring sequences S for each value of N𝑠 are given. For N𝑝 > 1 value of
k𝑖,𝑖+1 for certain concentration c will be fallen between minimum and maximum values
of the k’s of the all sequences at the concentration c.
Prediction of the well-known rules of mixture from Voight and Reuss [4] is shown

in Figure 2 as solid (red) and dashed (blue) lines for isostrain and isostress conditions,
respectively. The rules give upper and lower bounds for composite materials elasticity.
The proposed model in this work, which is calculated using a spreadsheet-software,
can go beyond these bounds by adjusting the parameter k𝐴𝐵. Some sequences S are
still between those two bounds, especially most in the type II. Materials of type I
represents adhesive force is less than cohesive force, while type III represent adhesive
force is more than cohesive force.
In the future, a rule how to select possible occurring sequence S should be defined,

i.e. why some composite materials could be type I, II, or III.
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N𝑠 c S k𝑖,𝑖+1 N𝑠 c S k𝑖,𝑖+1

2 0 AA k𝐴𝐴 4 0 AAAA k𝐴𝐴 k𝐴𝐴
k𝐴𝐴

0.5 AB k𝐴𝐵 0.25 AAAB k𝐴𝐴 k𝐴𝐴
k𝐴𝐵

0.5 BA k𝐴𝐵 AABA k𝐴𝐴 k𝐴𝐵
k𝐴𝐵

1 BB k𝐵𝐵 ABAA k𝐴𝐵 k𝐴𝐵
k𝐴𝐴

BAAA k𝐴𝐵 k𝐴𝐴
k𝐴𝐴

0.5 AABB k𝐴𝐴 k𝐴𝐵
k𝐴𝐴

N𝑠 c S k𝑖,𝑖+1 ABAB k𝐴𝐵 k𝐴𝐵
k𝐴𝐵

3 0 AAA k𝐴𝐴 k𝐴𝐴 ABBA k𝐴𝐵 k𝐵𝐵
k𝐴𝐵

0.33 AAB k𝐴𝐴 k𝐴𝐵 BAAB k𝐴𝐵 k𝐴𝐴
k𝐴𝐵

ABA k𝐴𝐵 k𝐴𝐵 BABA k𝐴𝐵 k𝐴𝐵
k𝐴𝐵

BAA k𝐴𝐵 k𝐴𝐴 BBAA k𝐵𝐵 k𝐴𝐵
k𝐴𝐴

0.67 ABB k𝐴𝐵 k𝐵𝐵 0.75 ABBB k𝐴𝐵 k𝐵𝐵
k𝐵𝐵

BAB k𝐴𝐵 k𝐴𝐵 BABB k𝐴𝐵 k𝐴𝐵
k𝐵𝐵

BAA k𝐴𝐵 k𝐴𝐴 BBAB k𝐵𝐵 k𝐴𝐵
k𝐴𝐵

1 BBB k𝐵𝐵 k𝐵𝐵 BBBA k𝐵𝐵 k𝐵𝐵
k𝐴𝐵

1 BBBB k𝐵𝐵 k𝐵𝐵
k𝐵𝐵

T˔˕˟˘ 2: Possible sequences S of a sub-fiber for N𝑠 = 2–4 and its spring constant k𝑖,𝑖+1 types.

   
         (a)          (b)          (c) 

50

1 0 0

1 5 0

2 0 0

2 5 0

0 0 .2 0 .4 0 .6 0 .8 1

k

c

5 0

1 0 0

1 5 0

2 0 0

2 5 0

0 0 .2 0 .4 0 .6 0 .8 1

k

c

5 0

1 0 0

1 5 0

2 0 0

2 5 0

0 0 .2 0 .4 0 .6 0 .8 1

k

c

Figure 2: Composite spring constant k (N𝑝 = 1, N𝑠 = 4) as function of concentration c for: (a) type I with k𝐴𝐴
= 100, k𝐴𝐵 = 50, k𝐵𝐵 = 200, (b) type II with k𝐴𝐴 = 100, k𝐴𝐵 = 150, k𝐵𝐵 = 200, and (c) type III with k𝐴𝐴 = 100,
k𝐴𝐵 = 250, k𝐵𝐵 = 200, with lower (dashed line) and upper (solid line) bounds.
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4. Conclusions

A model to predict elasticity of composite materials based on spring-mass system
has been conducted in this work. It can give bounds beyond upper and lower bounds
predicted from Voight and Reuss formulas. Composite material of type II [min(k𝐴𝐴, k𝐵𝐵)
< k𝐴𝐵 < max(k𝐴𝐴, k𝐵𝐵)] is the most fitted to the formulas.
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