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Abstract
Spatial data are susceptible to covariates measured with errors. However, the error-
prone covariates and the random errors are usually assumed to be symmetrically,
normally distribution. The purpose of this paper is to analyze Bayesian inference of
spatial regression models with a covariate measured with Skew-normal error by way
of Monte Carlo simulation. We consider the spatial regression models with different
degree of spatial correlation in the covariate of interest and measurement error
variance. The simulation examines the performance of Bayesian estimators in the case
of (i) Naive models without measurement error correction; (ii) Normal distribution for
the error-prone covariate and random errors; (iii) Skew-normal distribution (SN) for the
error-prone covariate and normal distribution for random errors. We use the relative
bias (RelBias) and Root Mean Squared Error (RMSE) as valuation criteria. The main
result is that the Skew-normal prior estimator outperform the normal, symmetrical prior
distribution and the Naive models without measurement error correction.

Keywords: Spatial regression, measurement error, Bayesian analysis, Skew-normal
distribution

1. Introduction

The spatial data are typically collected from points or regions located in space and thus
tend to be spatially dependent. Ignoring the violation of spatial independence between
observations will produce estimates that are biased, inconsistent or inefficient. A large
variety of spatial models to take spatial dependence among observations into account
have been developed [1-3].

Measurement errors in the spatially lagged explanatory variables is are not routinely
accounted for, in spite of the fact that their consequences are serious. The estimator of
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the coefficients spatially lagged exogenous variables are attenuated, while the estimator
of the variance components are inflated, if covariate measurement error is ignored [4].
However, the amount of attenuation depends on the degree of spatial correlation in
both the true covariates and the random error term of the regression model [5].

Several approaches to correct for measurement error in spatially lagged exogenous
regressors have been proposed in literature. The Maximum Likelihood (ML) based on an
Expectation-Maximization EM algorithm correct the biases in the estimators of the naive
estimator, i.e. the estimator that ignore the measurement error, but are associated with
larger variances [4]. Another approaches adjusting the estimates by means of an esti-
mated attenuation factor obtained by the method of moments, or using an appropriate
transformation of the error prone covariate [5]. Additionally, a semiparametric approach
i.e. penalized least squares to obtain a bias-corrected estimator of the parameters could
be as an alternative [6].

The error-prone covariates and the random errors are usually assumed to be sym-
metrically, normally distribution [4-6]. However, the assumption of normality may be too
restrictive in many applications [7, 8]. The linear models with Skew-normal measurement
error models perform better when there is evidence of departure from symmetry or
normality [7]. Furthermore, the Skew-normal linear mixedmeasurement error outperform
the normal mixed measurement error model when the actual covariate distribution has
a Skew-normal [8].

Among several approaches to correct for measurement error, Bayesian methods
provide themost flexible framework. The advantage of Bayesian approaches is that prior
knowledge, and in particular prior uncertainty of error variance can be incorporated in
the model. While frequentist approaches require fixing the regression coefficients and
the variance components parameters to guarantee identifiability, the Bayesian setting
allows to represent uncertainty with suitable prior distributions [9].

The purpose of this paper is to analyze Bayesian inference of spatial regression mod-
els with covariate measured with Skew-normal error by way of Monte Carlo simulation.

2. Materials and Methods

2.1. The spatial linear model with measurement error

A spatial regression model defined as follows:
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Let 𝑥𝑖 represents the error prone true covariate for spatial unit i, i=1, …..,n, and is
related to the response 𝑦𝑖 corresponding to a linear model:

𝑦𝑖 = 𝛽0 + 𝛽𝑥𝑥𝑖 + 𝜀𝑖 (1)

where 𝜀 = (𝜀1,…… ., 𝜀𝑛)𝑇 ∼ 𝑁(0, Σ𝜀) and Σ𝜀 is a covariance matrix with a spatial
structure. Suppose 𝑞𝑖 the observed error prone covariate for spatial unit i related to the
true covariate 𝑥𝑖 according to a classical measurement error model:

𝑞𝑖 = 𝑥𝑖 + 𝑢𝑖 (2)

where 𝑢 = (𝑢1,…… ., 𝑢𝑛)𝑇 ∼ 𝑁(0, Σ𝑢). When 𝑥 is also a normally distributed (say with
mean 𝜇𝑥 and covariance Σ𝑥), then 𝑦 = (𝑦1,…… ., 𝑦𝑛)𝑇 and 𝑞 = (𝑞1,…… ., 𝑞𝑛)𝑇 have a
multivariate normal distribution,
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where 1 is an 𝑛 ×1 vector of 1’s. The (𝑦 | 𝑞) is normally distributed with conditional mean

𝐸 (𝑦 | 𝑞) = 𝛽01 + 𝛽𝑥 (𝐼 − Λ) 𝜇𝑥 + 𝛽𝑥Λ𝑞 (3)

and conditional variance

Var (𝑦 | 𝑞) = Σ𝜀 + 𝛽2𝑥(𝐼 − Λ)Σ𝑋

where

Λ = Σ𝑋(Σ𝑋 + Σ𝑈)−1 (4)

These results indicate that the regression coefficients obtained by regressing the
response 𝑦 on the observed, but measured with error, covariate 𝑞 are biased. The same
holds for the conditional variance [5].

2.2. Bayesian analysis of measurement error

The joint density of all relevant variables of measurement error model (1) can be factored
as

𝑓 (𝑦, 𝑥, 𝑞 | 𝜃𝑅, 𝜃𝑀 , 𝜃𝐸) = 𝑓 (𝑦 | 𝑥, 𝜃𝑅) 𝑓 (𝑞 | 𝑥, 𝑦, 𝜃𝑀) 𝑓(𝑥 ∣ 𝜃𝐸) (5)

where 𝜃 = ( 𝜃𝑅, 𝜃𝑀 , 𝜃𝐸) is the vector of the model parameters. The first term on the
right hand side of (5) known as the outcomemodel, represents the relationship between
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the response y and the true covariate x. The vector, 𝜃𝑅 is the regression parameters in
the outcome model. The second term is the measurement error model, and the third
term is the covariate (exposure) model.

In the presence of measurement error, we observe (𝑦, 𝑞) instead of (𝑦, 𝑥), hence

𝑓 (𝑦, 𝑞 | 𝜃𝑅, 𝜃𝑀 , 𝜃𝐸) = ∫𝑓 (𝑦, 𝑥, 𝑞 | 𝜃𝑅, 𝜃𝑀 , 𝜃𝐸)𝑑𝑥 (6)

is required to form the likelihood. In some cases, this integral does not have a closed
form. However, the Bayes MCMC approach can be applied with (5) and works with the
integral in (6) only implicitly [10].

2.2.1. Posterior distribution

Furthermore the equation (5) can be written as

𝑓(𝑦, 𝑥, 𝑞, 𝜃) =
𝑛

∏
𝑖=1

𝑓 (𝑦𝑖 | 𝑥𝑖, 𝜃𝑅) 𝑓 (𝑞 | 𝑥𝑖, 𝜃𝑀) 𝑓 (𝑥𝑖 | 𝜃𝐸) ×𝜋(𝜃𝑅, 𝜃𝑀 , 𝜃𝐸) (7)

where 𝜋(𝜃𝑅, 𝜃𝑀 , 𝜃𝐸) is the prior distribution of the model parameters. The joint posterior
density for the unknown 𝜃 and 𝑥 conditional on the observed response data and
surrogate covariate values (𝑦, 𝑞) is given by

𝑓 (𝑥, 𝜃 | 𝑦, 𝑞) ∝
[

𝑛

∏
𝑖=1

𝑓 (𝑦𝑖 | 𝑥𝑖, 𝜃𝑅) 𝑓 (𝑞 | 𝑥𝑖, 𝜃𝑀) 𝑓 (𝑥𝑖 | 𝜃𝐸)]
× 𝜋(𝜃𝑅, 𝜃𝑀 , 𝜃𝐸) (8)

Given the joint posterior distribution, it is straightforward to derive the full posterior con-
ditional for each unobserved quantity given the observed quantities and the remaining
unobserved quantities. The Bayesian inference can then be carried out based on the
posterior conditionals by applying appropriate MCMC algorithms [10].

2.2.2. Skew-normal covariate model

In this paper we extend the above measurement error model (2) by considering that
the covariate follow a Skew-normal distribution. The univariate Skew-normal distribution
with location parameter μ, scale parameter 𝜎2 and skewness parameter γ is defined as:

𝑓 (𝑥; 𝜇, 𝜎2, 𝛾) = 2𝜙(
𝑥 − 𝜇
𝜎 )Φ(𝛾

𝑥 − 𝜇
𝜎 ) , 𝑥, 𝜇, 𝛾 𝜖 𝑅, 𝜎 > 0 (9)

where 𝜙(.) and Φ (.) denote the probability density function and cumulative distribu-
tion function of the normal distribution, respectively. The distribution is denoted as
𝑆𝑁(𝜇, 𝜎2, 𝛾). A random variable 𝑍 = 𝑥−𝜇

𝜎 following a standard Skew-normal distribution
with μ=0 and 𝜎2 = 1, which is denoted as SN(γ) [11].

The Skew-normal distribution has the following properties,
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1. 𝐸 (𝑋) = 𝜇 +√
2
𝜋

𝛾
√1+𝛾2

,

2. 𝑉𝑎𝑟 (𝑋) = (1−
2𝛾

𝜋(1+𝛾2))𝜎
2,

3. 𝜐 = 1
2 (4−𝜋)(

𝐸2(𝑋)
𝑉𝑎𝑟(𝑋))

3
2 and 𝜅 = 2(𝜋−3)(

𝐸2(𝑋)
𝑉𝑎𝑟(𝑋))

2
where 𝜐 and 𝜅 are asymmetry and

kurtosis indexes, respectively.

4. If 𝛾 = 0 then 𝑋 ∼ 𝑁 (𝜇, 𝜎2),

5. If 𝑍 ∼ 𝑆𝑁(𝛾) then 𝑍
𝑑
⇔ 𝛾

√1+𝛾2 |𝑍0| + 1
√1+𝛾2

𝑍
1

where 𝑍0 and 𝑍1 are 𝑖𝑖𝑑𝑁 (0, 1) random variables and
𝑑
⇔ means “distributed as” [7, 8].

2.3. Simulation

We consider the spatial regression model as follows,

𝑌 = 𝛼 + 𝑋𝛽 + 𝜀 (10)

with Y the response; α the intercept, X the single true covariateswith coefficients β, and ε
the error term. The unobserved true covariate X was generated spatially autocorrelated
by means of spatial weight matrix W, i.e., X = λWX + 𝜖, where the weight 𝑤𝑖𝑗 is 1 if areas
i and j are neighbors and 0 otherwise, λ the spatial dependence parameter [12].

We assume that

𝑄 = 𝑋 + 𝑈 (11)

where Q is the observed covariates related to the true covariates X according to a clas-
sical measurement error model with 𝑈 ∼ 𝑁 (0, 𝜎2𝑈). We assume 𝑋 ∼ 𝑆𝑁 (𝜇𝑥, 𝜎2𝑥, 𝛾𝑥 )
with 𝜇𝑥 = 0, 𝜎2𝑥 = 1, and 𝛾𝑥 = 3.

We take the data to be on a regular grid with the grid size to be 7 (𝑛 = 7𝑥7), 10(𝑛 =
10𝑥10) and 20(𝑛 = 20𝑥20) representing small, medium and large sample sizes. The
weights matrix W is row normalized. We allow three different values for λ, namely 0.3,
0.6, and 0.9 for a weak, medium, and strong spatial dependence [13]. The observed
error-prone covariate Q is generated by adding Gaussian noise with variance 𝜎2𝑈 =
0.1, 0.3 and 0.7 to X. Outcome data, Y are then generated with slope and intercept
parameters set at (𝛼, 𝛽)𝑇 = (1, 2)𝑇 . We further take ε ∼ 𝑁 (0, 𝜎2𝜀) with 𝜎2𝜀 = 1.

For each sample size (T), λ and 𝜎2𝑈 , we generate 100 Monte Carlo simulation datasets.
For each generated dataset, the Spatial Regression Models are estimated under the
assumption of
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1. Naive models without measurement error correction

2. Normal distribution for the error-prone covariate 𝑋 ∼ 𝑁 (𝜇𝑥, 𝜎2𝑥) and random
errors, 𝜀 ∼ 𝑁 (0, 𝜎2𝜀) .

3. Skew-normal distribution for the error-prone covariate 𝑋 ∼ 𝑆𝑁 (𝜇𝑥, 𝜎2𝑥, 𝛾𝑥 ) and
Normal distribution for random errors, 𝜀 ∼ 𝑁 (0, 𝜎2𝜀) .

The following independent priors were considered to perform the Gibbs sampler,
𝛼, 𝛽 ∼ 𝑁 (0, 100) , 𝜎2𝜀 ∼ 𝐼𝐺 (0.01, 0.01) , 𝜎2𝑈 ∼ 𝐼𝐺 (0.01, 0.01) , 𝜇𝑥 ∼ 𝑁 (0, 1000) , 𝜎2𝑥 ∼
𝐼𝐺 (0.01, 0.01). For these prior densities, we generated three parallel independent runs
of the Gibbs sampler chain of size 25 000 for each parameter. We disregarded the first 5
000 iterations to eliminate the effect of the initial value. We assessed chain convergence
using the Brooks-Gelman-Rubin scale reduction factor (𝑅̂). The 𝑅̂ approximately 1
indicates convergence [14]. We estimate the models using the R2jags package available
in R [15].

For each simulation, we compute the relative bias (RelBias) and the Root Mean Square
Error (RMSE) for each parameter estimate over 100 samples. These statistics are defined
as

𝑅𝑒𝑙𝐵𝑖𝑎𝑠 (𝛽) = 1
𝑘

𝑘

∑
𝑗=1 (

𝛽𝑗
𝛽 − 1

)
, RMSE (𝛽) =

√√√√
⎷

1
𝑘

𝑘

∑
𝑗=1

(𝛽𝑗 − 𝛽)
2

where 𝛽𝑗 is the estimate of β for the j𝑡ℎ sample and k=100.

We also compare the models based on the expected Akaike information criterion
(EAIC) and the expected Bayesian information criterion (EBIC). The EAIC and EBIC can
be estimated using MCMC output as follows

𝐸𝐴𝐼𝐶 = 𝒟 + 2𝑝, 𝐸𝐵𝐼𝐶 = 𝒟 + 𝑝𝑙𝑜𝑔 (𝑇 )

where 𝒟 is the posterior mean of the deviance, p the number of parameters in the
model, T the total number of observations [16].

3. Results and Discussion

Tables 1, 2 and 3 show that for the Spatial regression model and Skew-normal data,
the average RelBias (in absolute value) and the average RMSE for all T, 𝜆𝑋 , three
measurement error variance and the coefficient 𝛽𝑥 of the normal prior (N-N) are quiet
similar to the Skew normal prior (SN-N). However, for the Naive model are larger than
for the normal (N-N) and Skew normal prior (SN-N).
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Table 1: RelBias and RMSE of the Naïve, Normal (N-N), and Skew Normal (SN-N) prior for the Spatial
regression model with measurement error variance 0.1.

Prior

T 𝜆𝑋 Naive N-N SN-N

RelBias RMSE RelBias RMSE RelBias RMSE

49 0.3 -0.185 0.4411 -0.0088 0.2317 -0.0087 0.2323

0.6 -0.1495 0.3542 -0.0049 0.1626 -0.005 0.1628

0.9 -0.0488 0.169 0.0149 0.1236 0.0149 0.1224

100 0.3 -0.1957 0.4249 -0.0136 0.1509 -0.0133 0.1508

0.6 -0.1351 0.3051 0.0036 0.1334 0.0034 0.1335

0.9 -0.0637 0.1669 -0.0059 0.0891 -0.0058 0.0895

400 0.3 -0.1804 0.3699 -0.0032 0.073 -0.0034 0.0731

0.6 -0.1403 0.2885 0.0001 0.053 0.0002 0.0528

0.9 -0.0531 0.1154 0.0011 0.0365 0.001 0.0364

Average -0.1280 0.2928 -0.0019 0.1171 -0.0019 0.1171

Table 2: RelBias and RMSE of the Naïve, Normal (N-N), and Skew Normal (SN-N) prior for the Spatial
regression model with measurement error variance 0.3.

Prior

T 𝜆𝑋 Naive N-N SN-N

RelBias RMSE RelBias RMSE RelBias RMSE

49 0.3 -0.3888 0.8043 0.0215 0.181 0.022 0.1811

0.6 -0.33 0.6997 -0.0012 0.186 -0.0011 0.1859

0.9 -0.1743 0.4071 0.0041 0.1517 0.0049 0.1507

100 0.3 -0.4028 0.8212 0.0038 0.1605 0.0038 0.161

0.6 -0.3301 0.6773 -0.0127 0.1312 -0.0127 0.1311

0.9 -0.1483 0.326 0.003 0.0813 0.003 0.0803

400 0.3 -0.3876 0.7786 0.0056 0.0759 0.0056 0.0757

0.6 -0.3316 0.6669 -0.0001 0.0591 0 0.0591

0.9 -0.1468 0.3026 -0.0004 0.0395 -0.0005 0.0394

Average -0.2934 0.6093 0.0026 0.1185 0.0028 0.1183

We observed that the naïve estimate of the regression coefficient 𝛽𝑥 is attenuated
toward zero. Additionally, the values of RelBias and RMSE of the coefficient 𝛽𝑥 for the
three estimators increase with the measurement error variance 𝜎2𝑈 , but decrease with
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Table 3: RelBias and RMSE of the Naïve, Normal (N-N), and Skew Normal (SN-N) prior for the Spatial
regression model with measurement error variance 0.7.

Prior

T 𝜆𝑋 Naive N-N SN-N

RelBias RMSE RelBias RMSE RelBias RMSE

49 0.3 -0.6074 1.2298 -0.01 0.2305 -0.0102 0.23

0.6 -0.5369 1.0998 0.0023 0.1809 0.0029 0.1811

0.9 -0.3363 0.7162 0.0003 0.1236 0.0003 0.1245

100 0.3 -0.5966 1.1996 -0.0026 0.1495 -0.0026 0.1495

0.6 -0.5396 1.0879 0.0034 0.1254 0.0035 0.1256

0.9 -0.2982 0.6205 -0.0035 0.0782 -0.0034 0.0786

400 0.3 -0.6048 1.2117 0 0.0743 0 0.0745

0.6 -0.5409 1.0845 0.0006 0.0566 0.0007 0.0562

0.9 -0.2874 0.5814 -0.0027 0.0375 -0.003 0.0375

Average -0.4831 0.9813 -0.0014 0.1174 -0.0013 0.1175

Table 4: EAIC and EBIC of the Naïve, Normal (N-N), and Skew Normal (SN-N) prior for the Spatial regression
model with measurement error variance 0.1.

Prior

T 𝜆𝑋 Parameter Naive N-N SN-N

49 0.3 EAIC 159.2988 274.4879 208.6433

EBIC 158.0596 272.629 206.4747

0.6 EAIC 161.8768 289.3854 224.1755

EBIC 160.6376 287.5266 222.0068

0.9 EAIC 163.3675 341.1097 267.4752

EBIC 162.1283 339.2509 265.3066

100 0.3 EAIC 320.3707 551.9545 418.4622

EBIC 320.3707 551.9545 418.4622

0.6 EAIC 322.7067 584.9334 473.0221

EBIC 322.7067 584.9334 473.0221

0.9 EAIC 324.1289 681.606 584.0127

EBIC 324.1289 681.606 584.0127

400 0.3 EAIC 1253.649 2187.9461 1614.2875

EBIC 1256.0572 2191.5584 1618.5019

0.6 EAIC 1260.2144 2304.397 1828.0391

EBIC 1262.6226 2308.0094 1832.2536

0.9 EAIC 1272.5743 2737.4345 2469.2567

EBIC 1274.9826 2741.0468 2473.4711
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Table 5: EAIC and EBIC of the Naïve, Normal (N-N), and Skew Normal (SN-N) prior for the Spatial regression
model with measurement error variance 0.3..

Prior
T 𝜆𝑋 Parameter Naive N-N SN-N
49 0.3 EAIC 174.4723 329.846 260.8013

EBIC 173.2331 327.9872 258.6326
0.6 EAIC 176.6635 346.5873 286.8002

EBIC 175.4243 344.7285 284.6315
0.9 EAIC 180.0722 385.6472 316.7996

EBIC 178.833 383.7883 314.631
100 0.3 EAIC 346.6795 665.5882 533.479

EBIC 346.6795 665.5882 533.479
0.6 EAIC 350.8364 698.126 593.5298

EBIC 350.8364 698.126 593.5298
0.9 EAIC 358.7151 792.5358 685.0883

EBIC 358.7151 792.5358 685.0883
400 0.3 EAIC 1367.4139 2631.9434 2079.6499

EBIC 1369.8221 2635.5557 2083.8643
0.6 EAIC 1377.4296 2729.3906 2300.703

EBIC 1379.8378 2733.003 2304.9174
0.9 EAIC 1426.5864 3165.1932 2892.4515

EBIC 1428.9947 3168.8056 2896.6659

Table 6: EAIC and EBIC of the Naïve, Normal (N-N), and Skew Normal (SN-N) prior for the Spatial regression
model with measurement error variance 0.7.

Prior
T 𝜆𝑋 Parameter Naive N-N SN-N
49 0.3 EAIC 183.9067 376.9027 306.301

EBIC 182.6675 375.0439 304.1324
0.6 EAIC 186.2684 383.4209 319.1254

EBIC 185.0291 381.562 316.9568
0.9 EAIC 199.8853 432.0987 365.3364

EBIC 198.6461 430.2398 363.1678
100 0.3 EAIC 364.5025 748.9659 618.5672

EBIC 364.5025 748.9659 618.5672
0.6 EAIC 377.1581 779.0555 655.9786

EBIC 377.1581 779.0555 655.9786
EAIC 398.2557 878.7195 779.1036

0.9 EBIC 398.2557 878.7195 779.1036
400 0.3 EAIC 1442.9183 2972.8864 2411.4332

EBIC 1445.3266 2976.4987 2415.6477
0.6 EAIC 1477.3687 3074.5225 2589.6749

EBIC 1479.7769 3078.1348 2593.8893
0.9 EAIC 1582.8831 3508.7772 3244.6129

EBIC 1585.2913 3512.3896 3248.8273
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the spatial dependence parameter 𝜆𝑋 . According to [4] that the stronger dependence
implies that neighbor areas can provide more information, and hence the estimates are
more resistant to the effect of measurement error.

Note also that the RelBias and RMSE of 𝛽𝑥 in the case of the normal and Skew-
normal prior with the measurement error variance 𝜎2𝑈 = 0.7 are smaller than 𝜎2𝑈 = 0.3.
Moreover, for the measurement error variance 𝜎2𝑈 = 0.1 the RelBias of 𝛽𝑥 with the spatial
dependence parameter 𝜆𝑋 = 0.9 are larger than 𝜆𝑋 = 0.6, but for the RMSE the opposite
holds.

Tables 4, 5 and 6 show the overall fit statistics for the Spatial measurement error
model. Compare to the normal model, the EAIC and EBIC all tend to favor the Skew-
normal model for all sample sizes (T), the three dependence parameter 𝜆𝑋 , and the
three measurement error variance 𝜎2𝑈 . Note that the Naive model have the smallest
EAIC and EBIC values, but this model does not account for the measurement error.
Therefore, the above results show that the Skew-normal prior outperform the normal,
symmetrical prior and the Naive model without measurement error correction.

4. Concluding Remarks

This paper analyzed by way of Monte Carlo simulation Bayesian inference of Spatial
Regression models with a Skew-normally spatially lagged covariate measured with
errors. The simulation examines the performance of Bayesian estimators in the case
of (i) Naive models without measurement error correction; (ii) Normal distribution for
the error-prone covariate and random errors; (iii) Skew-normal distribution (SN) for the
error-prone covariate and normal distribution for random errors.

The simulation results show that the Skew-normal prior estimator outperforms the
normal, symmetrical prior and the Naive models without measurement error correction.
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