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Abstract.
Historically, the exploration of corrosion inhibitor technology has relied extensively on
experimental methodologies, which are inherently associated with substantial costs,
prolonged durations, and significant resource utilization. However, the emergence of
ML approaches has recently garnered attention as a promising avenue for investigating
potential materials with corrosion inhibition properties. This study endeavors to
enhance the predictive capacity of ML models by leveraging polynomial functions.
Specifically, the investigation focuses on assessing the effectiveness of pyridine-
quinoline compounds in mitigating corrosion. Diverse ML models were systematically
evaluated, integrating polynomial functions to augment their predictive capabilities.
The integration of polynomial functions notably amplifies the predictive accuracy across
all tested models. Notably, the SVR model emerges as the most adept, exhibiting R²
of 0.936 and RMSE of 0.093. The outcomes of this inquiry underscore a significant
enhancement in predictive accuracy facilitated by the incorporation of polynomial
functions within ML models. The proposed SVR model stands out as a robust tool for
prognosticating the corrosion inhibition potential of pyridine-quinoline compounds.
This pioneering approach contributes invaluable insights into advancing machine
learning methodologies geared toward designing and engineering materials with
promising corrosion inhibition properties.
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1. Introduction

Corrosion, arising from chemical interactions between corrosive agents and metal,
stands as a persistent challenge significantly impacting maritime infrastructure [1]. Its
multifaceted ramifications encompass economic, social, industrial, environmental, secu-
rity, and safety facets [2], [3]. Diverse factors including salinity, pH, temperature, material
properties, and environmental influences collectively contribute to metal corrosion [4].
Among various mitigation strategies, inhibitor technology is heralded as the simplest,
most effective, and economical means of corrosion prevention [5]. Inhibitors, by forming
protective layers on metal surfaces, effectively impede mass charge transfer, thereby
safeguarding metal materials against corrosion [6]. Several experimental investigations
of pyridine-quinoline compounds have been carried out [7]-[12]. However, conven-
tional experimentation-based investigations into inhibitors prove to be expensive, time-
intensive, and resource-demanding [13].

To address these challenges, the field haswitnessed a surge in the utilization of Quan-
titative Structure-Property Relationship (QSPR) models, notably leveraging Machine
Learning (ML) methodologies, owing to their inherent capability to establish quantitative
relationships between chemical structures and compound properties [14]-[16]. Recent
endeavors in forecasting corrosion inhibition effectiveness have extensively employed
QSPR-based ML techniques [17], [18]. For example, using artificial neural network (ANN)
models, previous research estimated the corrosion inhibition potential of pyridine-
quinoline compounds, achieving a root mean square error (RMSE) value of 8.8% [19].
This research presents a more efficient approach. Nevertheless, the prediction results
from the model used in this study show the potential for further accuracy improvements.

Despite these advancements, the primary challenge remains to enhance the accuracy
of predictive models to render forecasts pertinent to real-world conditions [20]-[22]. In
this study, our innovation lies in employing a polynomial function to augment the preci-
sion of Support Vector Regression (SVR), Random Forest (RF), and K-Nearest Neighbors
(KNN) models when analyzing the effectiveness of pyridine-quinoline compounds as
corrosion inhibitors. This research builds upon prior investigations by advancing the
applicability and accuracy of ML models through the integration of polynomial functions.
Our study strives to bridge the gap between theoretical ML predictions and practical
corrosion inhibition scenarios, thereby contributing to the advancement of corrosion
mitigation strategies.
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2. Material and Methods

2.1. Dataset

The dataset employed in this study comprises pyridine-quinoline derivative compounds
gathered from Set et al. [19], Skrypnik et al. [23], and Doroshenko et al. [24], constituting
a total of 41 samples, each delineated by 20 quantum chemical descriptors (See Table
1). These descriptors function as input features for predicting the Corrosion Inhibition
Efficiency (CIE) value as output target.

Table 1: Quantum Chemistry Descriptors.

Descriptors

HOMO Electrophilicity

LUMO Electron donor capacity

Gap energy Electron acceptor capacity

Ionization potential The fraction of electrons
transferred

Electron affinity Natural bonding orbital

Electronegativity Hydrophobicity

Global hardness Van der Waals surface area

Global softness Van der Waals volume

Dipole moment Solvent accessible surface area

Polarization Adsorption energy

The LUMO serves as an electron acceptor, whereas the HOMO signifies the inhibitory
molecule’s capability to transfer electrons. The gap energy denotes the degree of
repulsive bonding between atoms and a metal surface. Ionization potential measures
the energy required to remove external electrons from an atom, determining its reac-
tivity. Electron affinity refers to the energy needed to detach one electron from a
molecule, while electronegativity characterizes an inhibitor compound’s ability to attract
electrons to achieve electron balance. Global softness defines a molecule’s ability to
absorb charges, whereas hardness signifies its resistance to charge transfer. The dipole
moment measures a molecule’s interaction capability on a metal surface. Charge polar-
ization surrounding molecules is crucial for both physisorption and chemical absorption
related to electrical interactions with metal surfaces. Electron density distribution and its
alteration ability affect a molecule’s polarizability. Electrophilicity pertains to a molecule’s
electron-attracting property, while the ability to donate or accept electrons defines
charge transfer tendencies. Electron movement is determined by the percentage of
electrons that are transported from inhibitor molecules to the atoms on the metal
surface. Interacting energies, studied through natural bonding orbitals, ascertain the
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kind and quantity of atomic energy. Hydrophobicity characterizes a molecule’s capacity
to form an adsorption layer through hydrophobic processes. Molecule dimensions, sizes,
and solvent-accessible surface area impact their ability to shield metal surfaces from
corrosive chemicals. Overall, corrosion inhibition processes are greatly influenced by the
interaction between inhibitor molecules and the metal layer. Adsorption and binding
energies are pivotal molecular descriptors driving physisorption and chemisorption,
respectively [25]-[29].

2.2. Model Development

Forecasting the CIE value for the pyridine-quinoline molecule entails the utilization of
SVR, KNN, and RF algorithms, both before and after integrating the polynomial function.
All measurements, characteristics, and methodologies adhere to the officially stipulated
standards elucidated in Sci-kit Learn 0.32.2 [30]. The dataset is divided into subgroups
for testing and training. The preprocessing phase encompasses the normalization of
training and testing datasets to mitigate potential biases that features might impart
on prediction outcomes. Subsequently, the SVR, KNN, and RF algorithms are trained
and tested on their respective sets, yielding the initial model. After this, a polynomial
function is trained using the predicted outcomes from the training set to constitute the
final model. The predictive efficacy of this model is assessed using the testing set. The
final prognostication, encapsulating the precision of each technique, is derived from
this process.

 

 

 

 

Figure 1: ML model development.

2.3. Model Validation

The predictive capacity of themodel is evaluated and authenticated employing stratified
random splitting, dividing the training and testing sets in a 70:30 proportion. Leave-
One-Out Cross-Validation is utilized to validate the model’s effectiveness, employing
one subset for validation while utilizing the remaining subsets for model training (See
Figure 2). Evaluation of each model’s performance is predicated upon Coefficient of
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Determination (R²) and Root Mean Square Error (RMSE) metrics. An optimal model
manifests an R² value approximating 1 and the lowest attainable RMSE.

 

Figure 2: Model cross-validation.

3. Result and Discussion

In this study, polynomial functions were integrated into SVR, KNN, and RF algorithms to
enhance their predictive capabilities. The assessment of each algorithm’s performance
relied on RMSE and R2 values, as depicted in Table 2. The results illustrate a substantial
enhancement in the predictive abilities of each model upon incorporating polynomial
functions, evident from the improved RMSE and R2 values.

Table 2: The result of the model performances.

Model Without Polynomial Within Polynomial

RMSE R2 RMSE R2

SVR 0.109 0.910 0.093 0.936

RF 0.110 0.865 0.097 0.889

KNN 0.208 0.201 0.161 0.210

The utilization of polynomial functions during the prediction process serves as an
instrumental method to elevate model performance, particularly through the application
of boosting techniques. The careful orchestration of polynomial functions aims to attain
optimal accuracy while ensuring stability amidst variations in the dataset. This stability
feature allows the model to offer robust predictions even in scenarios where training
data undergoes alterations, eliminating the necessity for a complete model overhaul.

Additionally, the findings highlight the SVR model as the most adept in predicting CIE
values for pyridine-quinoline compounds. The data distribution visualized in Figure 3
aligns with the aforementioned performance metrics. Notably, the SVR model exhibits
data point distributions closest to the prediction line compared to other models. This
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trend is consistent across all models integrated with polynomial functions, denoted by
the presence of blue data points, indicating their inclination towards closer alignment
with the prediction line.

   

Figure 3: Point data distribution model.

The superiority of the model proposed in our study is further evident when compared
to other research utilizing different models on similar datasets or employing models and
datasets relevant to our investigation. As depicted in Table 3, the performance of the
SVR model integrated with polynomial functions, as the proposed model, surpasses
other models found in existing literature.

Table 3: Comparison between proposed and other works.

Dataset Model RMSE R2

Pyridine-
Quinoline

SVR-Polynomial (proposed) 0.093 0.936

Pyridine-
Quinoline [19]

ANN 8.80 -

Pyrimidine [31] RF 5.71 -

Quinoxaline [32] ANN 5.42 -

Pyridazine [33] ANN - 0.920

Pyrazine [34] MLR - 0.903

The outcomes substantiate the significant augmentation in predictive capacity
achieved through the integration of polynomial functions into the modeling tech-
niques. This underscores the importance of employing advanced methodologies, such
as boosting techniques, within ML models to enrich corrosion inhibition efficiency
predictions. Furthermore, the pronounced superiority of the SVR model emphasizes its
potential as a foundational framework for future research, potentially paving the way
for more sophisticated predictive methods in this field.

4. Conclusion

The incorporation of polynomial functions in ML models based on QSPR has signif-
icantly increased the accuracy in predicting CIE for pyridine-quinoline compounds.
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Assessments based on R2 and RMSE values consistently show important improvements
in prediction accuracy after the integration of polynomial functions. Notably, the SVR
model outperforms the KNN and RF models, as it shows superior efficacy. This study
makes a significant contribution by emphasizing the important role of using polynomial
functions to improve the precision of corrosion inhibition predictions, which differen-
tiates it from previous studies, for example from relevant research by Ser et al. [19].
The practical implications extend to various domains in materials science and corrosion
inhibition, thereby offering advanced approaches to developing more precise predictive
models. This highlights promising directions for further research in improving prediction
models in this field, with a focus on progress towards more sophisticated prediction
methodologies.
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