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Abstract.
The corrosion of materials poses a significant challenge in various industries, leading
to substantial economic impacts. In this context, pyrimidine compounds emerge
as promising, non-toxic, cost-effective, and versatile corrosion inhibitors. However,
conventional methods for identifying such inhibitors are typically time-consuming,
expensive, and labor-intensive. Addressing this challenge, our study leverages machine
learning (ML) to predict pyrimidine compounds corrosion inhibition efficiency (CIE).
Using a quantitative structure-property relationship (QSPR) model, we compared 14
linear and 12 non-linear ML algorithms to identify the most accurate predictor of CIE.
The bagging regressor model demonstrated superior performance, achieving a root
mean square error (RMSE) of 5.38, a mean square error (MSE) of 28.93, a mean
absolute error (MAE) of 4.23, and a mean absolute percentage error (MAPE) of 0.05 in
predicting the CIE values for pyrimidine compounds. This research marks a significant
advancement in corrosion science, offering a novel and efficient ML-based approach as
an alternative to traditional experimental methods. It shows that machine learning can
quickly and accurately determine how well organic chemical inhibitors like pyrimidine
stop material corrosion. This method gives the industry a new perspective and a
workable solution to a problem that has existed for a long time.
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1. Introduction

The economic consequences of corrosion are significant, with annual costs for corro-
sion control estimated at approximately US$ 2.5 trillion [5]. Utilizing corrosion inhibitor
technologies, which can decelerate corrosion rates in metals such as steel, iron, and
aluminum, has decreased these expenses by as much as 35% [6]. Although Density
Functional Theory (DFT) has the potential to assess corrosion inhibitors, conventional
experimental techniques for corrosion treatment continue to be expensive and time-
consuming [7-9].

The integration of various algorithmic models and artificial intelligence has been
made easier by recent advancements in computing technology. This has led to improved
machine learning processes, including classification, clustering, and model develop-
ment. Machine learning (ML) techniques that utilize quantitative structure-activity rela-
tionships (QSAR) or quantitative structure-property relationships (QSPR) have shown
promise in the field of corrosion inhibitors, both in terms of efficiency and effectiveness
[8-11]. Prior studies have examined different algorithmic models, including Partial Least
Squares (PLS), Multiple Linear Regression (MLR), Random Forest (RF), Autoregressive
with Exogenous Inputs (ARX), Support Vector Machine (SVM), and similar models [12-15].
The Bagging Regressor, which is a non-linear model algorithm, has yielded satisfactory
predictive results [16, 17]. The objective of this study is to assess and compare the
effectiveness of linear and non-linear algorithm models in a machine learning-based
quantitative structure-property relationship (QSPR) approach. The main objective is to
forecast the inhibition efficiency (IE %) of corrosion inhibitors.

The primary objective of this research is to create a QSPR/QSAR model that explains
the correlation between the chemical compositions of inhibitors and their ability to
prevent corrosion. This method can assess untried substances and aid in creating new
inhibitors with specific characteristics. Nevertheless, the existing literature needs to
highlight the complete potential of machine learning models in this particular context.
This study aims to address these discrepancies by conducting a thorough and evalu-
ative examination of existing methodologies and their constraints. Our objective is to
provide a fresh viewpoint and contribute to the field by showcasing the effectiveness of
integrating linear and non-linear algorithms in predicting the effectiveness of corrosion
inhibitors. This approach is characterized by its innovation and ability to address the
limitations of prior research. It offers a more efficient and cost-effective approach to
corrosion management. The corrosion of materials presents a significant obstacle in
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diverse industries, resulting in substantial economic consequences. Pyrimidine com-
pounds are emerging as corrosion inhibitors that show promise due to their non-toxicity,
cost-effectiveness, and versatility [12]. Nevertheless, conventional approaches to detect
these inhibitors are time-consuming, costly, and require significant manual effort.

To tackle this challenge, our study utilizes ML to predict pyrimidine compounds’
corrosion inhibition efficiency (CIE). Using a QSPR model, we evaluated 14 linear and
12 non-linear machine learning algorithms to determine the most precise predictor
of CIE. This research represents notable progress in corrosion science, providing a
new and effective machine learning-based technique as a substitute for conventional
experimental methods. Furthermore, it can be possible to evaluate new compounds
that have not yet been synthesized or tested. This technique can be used in designing
new corrosion inhibitors with some desirable traits.

2. Material and Methods

2.1. Materials

In this study, we utilized data from Alamri et al. [12], comprising 54 pyrimidine struc-
tures characterized by 14 quantum chemistry descriptors, as outlined in Table 1. These
descriptors include parameters like Energy of HOMO and LUMO, hardness, electron
sharing fraction, dipole moment, ionization potential, softness, electron affinity, absolute
electronegativity, electrophilicity, partition coefficient logarithm, molecular mass, and
molecular volume. Identifying these descriptors is the foundational stage in developing
our machine learning model, which aims to evaluate the efficacy of pyrimidine as an
anti-corrosion agent. Our model’s target variable for prediction is the Inhibition Efficiency
(IE).

To predict IE, we divided our algorithm models into linear and non-linear categories
[18] as presented in Tables 2 and 3. Linear models, such as linear regression, Bayesian
Ridge, and SGD regression, best suit scenarios where the relationship between vari-
ables is proportional and linear. These models are relatively straightforward and offer
easy interpretability. They are ideal for more superficial relationships where the output
changes constantly as the input changes.

On the other hand, non-linear models, including the Gradient Boosting Regressor,
Adaboost Regressor, and XGB Regressor, are designed to handle more complex and
flexible relationships. They can identify and learn patterns that linear models may not
adequately capture. Non-linearmodels are beneficial in scenarioswhere the relationship
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Table 1: Quantum Chemistry Descriptors.

No. Descriptors Parameter

1 E𝐻𝑂𝑀𝑂 (eV) Energy of HOMO

2 E𝐿𝑈𝑀𝑂 (eV) Energy of LUMO

3 E𝐿−𝐻 (eV) Energy gap

4 𝜇 (D) The dipole moment

5 IP (eV) Ionization Potential

6 EA (eV) The electron affinity

7 χ (eV) The absolute electronegativity

8 η (eV) The hardness

9 σ (eV−1) The softness

10 ΔN The fraction of electrons shared

11 ω (eV) Electrophilicity

12 Log P The logarithm of the partition coefficient

13 M (g.mol−1) The molecular mass

14 V𝑚 (cm3/mol) The molecular volume

Table 2: Linear Models.

No. Algorithm Models

1 Linear Regression

2 ARD Regression

3 Bayesian Ridge

4 Elastic Net

5 Gamma Regressor

6 Huber Regressor

7 Orthogonal Matching Pursuit

8 Passive Aggressive Regressor

9 Poisson Regressor

10 Ransac Regressor

11 Ridge

12 SGD Regressor

13 Theilsen Regressor

14 Tweedie Regressor

between variables is more intricate and does not follow a straightforward proportional
increase or decrease.

The next step involves applying and comparing these models to determine their
effectiveness in predicting the IE of pyrimidine compounds. We will train each model
using the identified quantum chemistry descriptors as input variables and IE as the
target variable. The performance of each model will be evaluated based on standard
metrics such as accuracy, mean square error, and others to identify the most effective

DOI 10.18502/keg.v6i1.15350 Page 71



JICOMS

Table 3: Non-linear Models.

No. Algorithm Models

1 Adaboost Regressor

2 Bagging Regressor

3 Gradient Boosting Regressor

4 Random Forest Regressor

5 PLS Regression

6 Decision Tree Regressor

7 Extra Tree Regressor

8 Dummy Regressor

9 Gaussian Process Regressor

10 Kernel Ridge

11 KNeighbors Regressor

12 XGB Regressor

model for predicting corrosion inhibition efficiency. This step is crucial, as it will provide
insights into which models are best suited for predicting the effectiveness of pyrimi-
dine compounds as corrosion inhibitors and, hence, contribute to the optimization of
corrosion inhibition strategies in various industrial applications.

2.2. Methods

 

 

 

Figure 1: Flowchart of the Machine Learning Model Development Process.

After the preprocessing phase, algorithmic models were applied to the pre-processed
data. Thesemodels included both linearmodels (listed in Table 2) and non-linearmodels
(seen in Table 3). In order to reduce the impact of certain features on the models, we
applied the MinMaxScaler normalization technique [19]. In order to mitigate potential
biases and variance problems, we employed the K-Fold cross-validation technique,
thereby bolstering the reliability of our model evaluation. The model’s performance
was evaluated using a set of metrics including MSE, RMSE, MAE, MAPE, and the R-
Square [2-9], which that metrics are quantify the model’s predictions accuracy. A lower
value for these metrics indicates a higher level of precision in the model [20, 21]. The
R-Square value, which ranges from zero to one, measures the degree to which the
model accurately fits the observed data. A value approaching one indicates a model
that precisely captures the variability in the dataset.
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2
]
(5)

Where n represents the number of observations or samples, x and y are variables
representing the independent and dependent data features, respectively. 𝑌𝑖 is the
observation value, b𝑌𝑖 is the predictive value.

The following steps include training the models using the prepared dataset, followed
by testing and validation to ensure the reliability of the predictions. The final model
selection will be based on comparative analysis, weighing the performance metrics to
determine the most effective algorithm for predicting the IE of pyrimidine compounds
in corrosion inhibition.

3. Result and Discussion

Linear models revealed that the gamma regressor yielded the lowest MSE at 33.91 and
an RMSE of 5.82, alongside MAE and MAPE values of 4.47 and 0.05, respectively (Table
4). The bagging regressor algorithm demonstrated the best performance in non-linear
models, corresponding to MSE and RMSE values of 28.93 and 5.38 and MAE and MAPE
of 4.23 and 0.05 (Table 5). Compared to previous studies, such as the one by Alamri
et al. [12], which reported an MSE of 64.64 for the partial least square regression (PLS)
algorithm, our results indicate a substantial improvement in model performance. The
findings highlight the bagging regressor model as a notably effective tool in predicting
corrosion inhibition, marking progress in the field, and underscoring the potential of
machine learning for enhancing corrosion control strategies.

The bagging regressor model yielded the most accurate results, both linear and non-
linear, compared to the other tested algorithms. As illustrated in Figure 2, the training
and testing data prediction line closely agrees with the actual data points, as evidenced
by the R-Square value of 0.12.

4. Conclusion
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Table 4: Linear Model Analysis Results.

Model MSE RMSE MAE MAPE R-Square

Linear Regression 53.52 7.31 5.29 0.06 -0.62

ARD Regression 34.03 5.83 4.69 0.05 -0.03

Bayesian Ridge 33.98 5.83 4.68 0.05 -0.03

Elastic net 34.14 5.84 4.44 0.05 -0.03

Gamma
Regressor

33.91 5.82 4.47 0.05 -0.03

Huber Regressor 54.91 7.41 5.45 0.06 -0.66

Orthogonal
Matching Pursuit

34.14 5.84 4.71 0.05 -0.03

Passive
Aggressive
Regressor

46.06 6.79 5.41 0.06 -0.4

Poisson
Regressor

34.12 5.84 4.73 0.05 -0.03

Ransac Regressor 65.49 8.09 5.86 0.07 -0.98

Ridge 34.03 5.83 4.69 0.05 -0.03

SGD Regressor 41.81 6.47 5.19 0.06 -0.27

Theilsen
Regressor

50.83 7.13 5.43 0.06 -0.54

Tweedie
Regressor

33.94 5.83 4.47 0.05 -0.03

Figure 2: Bagging Regressor Model Performance.
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Table 5: Nonlinear Model Analysis Results.

Model MSE RMSE MAE MAPE R-Square

Adaboost
Regressor

37.30 6.11 4.90 0.06 -0.13

Bagging
Regressor

28.93 5.38 4.23 0.05 0.12

Gradient
Boosting
Regressor

33.37 5.78 4.73 0.05 -0.01

Random Forest
Regressor

30.56 5.53 4.19 0.05 0.07

PLS Regression 35.66 5.97 4.77 0.05 -0.08

Decision Tree
Regressor

48.22 6.94 5.85 0.07 -0.46

Extra Tree
Regressor

46.93 6.85 5.56 0.06 -0.42

Dummy
Regressor

34.21 5.85 4.45 0.05 -0.04

Gaussian Process
Regressor

33.73 5.81 4.69 0.05 -0.02

Kernel Ridge 40.93 6.39 5.29 0.06 -0.24

KNeighbors
Regressor

34.30 5.86 5.00 0.06 -0.03

XGB Regressor 34.67 5.89 4.61 0.05 -0.05
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