KnE Engineering

ISSN: 2518-6841

The latest conference proceedings on all fields of engineering.

Swarm Robotics as a Solution to Crops Inspection for Precision Agriculture

Published date: Feb 11 2018

Journal Title: KnE Engineering

Issue title: 6th Engineering, Science and Technology Conference - Panama 2017 (ESTEC 2017)

Pages: 552-562

DOI: 10.18502/keg.v3i1.1459

Authors:

Carlos Carbonecscarbone07@gmail.comUniversidad Tecnologica de Panama

Oscar Garibaldioscar.garibaldi@utp.ac.paUniversidad Tecnologica de Panama

Zohre Kurtzohrekurt@gmail.comUniversidad Tecnologica de Panama

Abstract:

This paper summarizes the concept of swarm robotics and its applicability to crop inspections. To increase the agricultural yield it is essential to monitor the crop health. Hence, precision agriculture is becoming a common practice for farmers providing a system that can inspect the state of the plants (Khosla and others, 2010). One of the rising technologies used for agricultural inspections is the use of unmaned air vehicles (UAVs) which are used to take aerial pictures of the farms so that the images could be processed to extract data about the state of the crops (Das et al., 2015). For this process both fixed wings and quadrotors UAVs are used with a preference over the quadrotor since it’s easier to operate and has a milder learning curve compared to fixed wings (Kolodny, 2017). UAVs require battery replacement especially when the environmental conditions result in longer inspection times (“Agriculture - Maximize Yields with Aerial Imaging,” n.d., “Matrice 100 - DJI Wiki,” n.d.). As a result, inspection systems for crops using commercial quadrotors are limited by the quadrotor´s maximum flight speed, maximum flight height, quadrotor´s battery time, crops area, wind conditions, etc. (“Mission Estimates,” n.d.).

Keywords: Swarm Robotics, Precision Agriculture, Unmanned Air Vehicle, Quadrotor, inspection.

References:

[1] Agriculture - Maximize Yields with Aerial Imaging [WWW Document], n.d.. DJI Off. URL http://www.dji.com/enterprise/agriculture (accessed 6.11.17).


[2] Bayındır, L., 2016. A review of swarm robotics tasks. Neurocomputing 172, 292–321. doi:10.1016/j.neucom.2015.05.116


[3] Beni, G., 2005. From Swarm Intelligence to Swarm Robotics, in: Şahin, E., Spears, W.M. (Eds.), Swarm Robotics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1– 9. doi:10.1007/978-3-540-30552-1_1


[4] Correll, N., Martinoli, A., 2006. Collective inspection of regular structures using a swarm of miniature robots, in: Experimental Robotics IX. Springer, pp. 375–386.


[5] Couceiro, M.S., 2014. Evolutionary Robot Swarms Under Real-World Constraints.


[6] Das, J., Cross, G., Qu, C., Makineni, A., Tokekar, P., Mulgaonkar, Y., Kumar, V., 2015. Devices, systems, and methods for automated monitoring enabling precision agriculture, in: Automation Science and Engineering (CASE), 2015 IEEE International Conference on. IEEE, pp. 462–469.


[7] de Vries, E., Subbarao, K., 2011. Cooperative Control of Swarms of Unmanned Aerial Vehicles. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2011-78


[8] Garcia, G.A., Keshmiri, S.S., 2016. Biologically inspired trajectory generation for swarming UAVs using topological distances. Aerosp. Sci. Technol. 54, 312–319. doi:10.1016/j.ast.2016.04.028


[9] Kennedy, J.F., Eberhart, R.C., Shi, Y., 2001. Swarm intelligence, The Morgan Kaufmann series in evolutionary computation. Morgan Kaufmann Publishers, San Francisco.


[10] Khosla, R., others, 2010. Precision agriculture: challenges and opportunities in a flat world, in: 19th World Congress of Soil Science, Soil Solutions for a Changing World. pp. 1–6.


[11] Kolodny, L., 2017. Fixed-wing drones not quite taking off in commercial market, a new DroneDeploy study finds. TechCrunch.


[12] Kumar, V., Kushleyev, A., Mellinger, D., 2017. Three-dimensional manipulation of teams of quadrotors. Google Patents.


[13] Leonard, E.C., 2016. Precision Agriculture, in: Wrigley, C., Corke, H., Seetharaman, K., Faubion, J. (Eds.), Encyclopedia of Food Grains (Second Edition). Academic Press, Oxford, pp. 162–167.


[14] Matrice 100 - DJI Wiki [WWW Document], n.d. URL http://wiki.dji.com/en/index.php/Matrice_100 (accessed 6.11.17).


[15] Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., Von Stryk, O., 2012. Comprehensive simulation of quadrotor uavs using ros and gazebo, in: International Conference on Simulation, Modeling, and Programming for Autonomous Robots. Springer, pp. 400–411.


[16] Mission Estimates [WWW Document], n.d.. Drones Made Easy. URL http://support.dronesmadeeasy.com/hc/en-us/articles/ 205754946-Mission-Estimates (accessed 6.16.17).


[17] Mulgaonkar, Y., Cross, G., Kumar, V., 2015. Design of small, safe and robust quadrotor swarms, in: Robotics and Automation (ICRA), 2015 IEEE International Conference on. IEEE, pp. 2208–2215.


[18] Navarro, I., Matía, F., 2013. An Introduction to Swarm Robotics. ISRN Robot. 2013, 1–10. doi:10.5402/2013/608164


[19] Rutishauser, S., Correll, N., Martinoli, A., 2009. Collaborative coverage using a swarm of networked miniature robots. Robot. Auton. Syst. 57, 517–525. doi:10.1016/j.robot.2008.10.023


[20] Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., Borozan, V., 2015. Environmental parameters monitoring in precision agriculture using wireless sensor networks. J. Clean. Prod. 88, 297–307. doi:http://dx.doi.org/10.1016/j.jclepro.2014.04.036


[21] Tan, Y., Zheng, Z., 2013. Research Advance in Swarm Robotics. Def. Technol. 9, 18– 39. doi:10.1016/j.dt.2013.03.001


[22] Torres, M., Pelta, D.A., Verdegay, J.L., Torres, J.C., 2016. Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction. Expert Syst. Appl. 55, 441– 451. doi:10.1016/j.eswa.2016.02.007


[23] Weng, L., Liu, Q., Xia, M., Song, Y.D., 2014. Immune network-based swarm intelligence and its application to unmanned aerial vehicle (UAV) swarm coordination. Neurocomputing 125, 134–141. doi:10.1016/j.neucom.2012.06.053


[24] Zhang, C., Kovacs, J.M., 2012. The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric. 13, 693–712. doi:10.1007/s11119-012- 9274-5


[25] Zhu, X., Liu, Z., Yang, J., 2015. Model of Collaborative UAV Swarm Toward Coordination and Control Mechanisms Study. Procedia Comput. Sci. 51, 493–502. doi:10.1016/j.procs.2015.05.274

XML
Download
HTML
Cite
Share
Crossref Cited-by logo

25

Thiemen Siemensma, Darren Chiu, Sneha Ramshanker, Radhika Nagpal, Bahar Haghighat (2024)

Collective Bayesian Decision-Making in a Swarm of Miniaturized Robots for Surface Inspection,

Volume: 14987, First Page: 57

10.1007/978-3-031-70932-6_5

Oliver Kosak, Philipp Kastenmüller, Constantin Wanninger, Wolfgang Reif (2025)

An Approach for Extended Swarm Formation Flight with Drones: $$\texttt {PROTEASE}^{2.0}$$,

Volume: 15220, First Page: 263

10.1007/978-3-031-75107-3_16

Yangyang Jiang, Yan Gao, Wenqi Song, Yue Li, Quan Quan (2022)

Bibliometric analysis of UAV swarms, Journal of Systems Engineering and Electronics

Volume: 33, Issue: 2, First Page: 406

10.23919/JSEE.2022.000042

Bahar Haghighat, Johannes Boghaert, Zev Minsky-Primus, Julia Ebert, Fanghzheng Liu, Martin Nisser, Ariel Ekblaw, Radhika Nagpal (2022)

An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots,

Volume: 13491, First Page: 14

10.1007/978-3-031-20176-9_2

Chrysanthos Maraveas, Marianna I. Kotzabasaki, Thomas Bartzanas (2023)

Intelligent Technologies, Enzyme-Embedded and Microbial Degradation of Agricultural Plastics, AgriEngineering

Volume: 5, Issue: 1, First Page: 85

10.3390/agriengineering5010006

Kang Xu, Jiejie Xing, Wenbin Sun, Peng Xu, Ranbing Yang (2024)

Multi-robot collision avoidance method in sweet potato fields, Frontiers in Plant Science

Volume: 15

10.3389/fpls.2024.1393541

Dengxiu Yu, Jiacheng Li, Zhen Wang, Xuelong Li (2024)

An Overview of Swarm Coordinated Control, IEEE Transactions on Artificial Intelligence

Volume: 5, Issue: 5, First Page: 1918

10.1109/TAI.2023.3314581

Muhammad Zeeshan Mehmood, Mukhtar Ahmed, Obaid Afzal, Muhammad Aqeel Aslam, Raja Zoq-ul-Arfeen, Ghulam Qadir, Saida Komal, Muhammad Adnan Shahid, Adeem Arshad Awan, Mohamed Ali Awale, Aashir Sameen, Tahira Kalsoom, Wajid Nasim, Fayyaz-ul-Hassan, Shakeel Ahmad (2022)

Internet of Things (IoT) and Sensors Technologies in Smart Agriculture: Applications, Opportunities, and Current Trends,

First Page: 339

10.1007/978-3-030-79408-8_21

Carlos Carbone, Ciro Potena, Daniele Nardi (2022)

Augmentation of Sunflower-Weed Segmentation Classification with Unity Generated Imagery Including Near Infrared Sensor Data,

Volume: 306, First Page: 42

10.1007/978-3-030-84811-8_3

Anandarup Mukherjee, Sudip Misra, Narendra Singh Raghuwanshi (2019)

A survey of unmanned aerial sensing solutions in precision agriculture, Journal of Network and Computer Applications

Volume: 148, First Page: 102461

10.1016/j.jnca.2019.102461

Guido S. Berger, Marco Teixeira, Alvaro Cantieri, José Lima, Ana I. Pereira, António Valente, Gabriel G. R. de Castro, Milena F. Pinto (2023)

Cooperative Heterogeneous Robots for Autonomous Insects Trap Monitoring System in a Precision Agriculture Scenario, Agriculture

Volume: 13, Issue: 2, First Page: 239

10.3390/agriculture13020239

Kshyamasagar Mahanta, Hima Bindu Maringanti, Maharaja Sriram Chandra (2024)

Real-World Applications of Bio-Inspired Swarm Robotics,

First Page: 155

10.4018/979-8-3693-1277-3.ch010

Maria Kondoyanni, Dimitrios Loukatos, Chrysanthos Maraveas, Christos Drosos, Konstantinos G. Arvanitis (2022)

Bio-Inspired Robots and Structures toward Fostering the Modernization of Agriculture, Biomimetics

Volume: 7, Issue: 2, First Page: 69

10.3390/biomimetics7020069

Pollyanna G. Faria Dias, Mateus C. Silva, Geraldo P. Rocha Filho, Patrícia A. Vargas, Luciano P. Cota, Gustavo Pessin (2021)

Swarm Robotics: A Perspective on the Latest Reviewed Concepts and Applications, Sensors

Volume: 21, Issue: 6, First Page: 2062

10.3390/s21062062

Junqiao Zhang, Qiang Qu, Xue-Bo Chen (2023)

A review on collective behavior modeling and simulation: building a link between cognitive psychology and physical action, Applied Intelligence

Volume: 53, Issue: 21, First Page: 25954

10.1007/s10489-023-04924-7

Xiaoyi Cai, Brent Schlotfeldt, Kasra Khosoussi, Nikolay Atanasov, George J. Pappas, Jonathan P. How (2023)

Energy-Aware, Collision-Free Information Gathering for Heterogeneous Robot Teams, IEEE Transactions on Robotics

Volume: 39, Issue: 4, First Page: 2585

10.1109/TRO.2023.3257512

Chanyoung Ju, Jeongeun Kim, Jaehwi Seol, Hyoung Il Son (2022)

A review on multirobot systems in agriculture, Computers and Electronics in Agriculture

Volume: 202, First Page: 107336

10.1016/j.compag.2022.107336

Jeongeun Kim, Hyoung Il Son (2020)

A Voronoi Diagram-Based Workspace Partition for Weak Cooperation of Multi-Robot System in Orchard, IEEE Access

Volume: 8, First Page: 20676

10.1109/ACCESS.2020.2969449