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ABSTRACT

We  consider  certain  approximation for determining the  equation  of motion  for nerve  signals by  using  the  model  of the  lipid  melting  of membranes.   The  nerve  pulses  are  found  to  display nonlinearity and  dispersion  during  the  melting  transition.  In this  simplified model the  nonlinear equation  early  proposed  by  Heimburg  and  coworkers  transformed to  the  well known  integrable Boussinesq  non linear  equation.   Under  specific values of the  parametric space this  system  shows the  existence  of singular  and  regular  soliton  like structures.   After  their  collisions  the  mutual creation  and annihilation (each other)  of nerve signals along the  nerve,  during  their  propagation, has been observed.
Keywords: Boussinesq equation,  singular  solitons,  single neurons,  neural  code.

RESUMEN
[bookmark: _GoBack]	Nosotros hemos analizado una aproximación analítica para determinar la ecuación del movimiento de pulsos nerviosos usando el modelo del disolución del lípido   en membranas. Los pulsos nerviosos muestran no linealidad y dispersión durante su transición fundente.  En este modelo simplificado la ecuación inicial  no lineal propuesta por Heimburg y colaboradores se transformó en  la conocida ecuación no lineal integrable de Boussinesq.  Bajo valores específicos de los parámetros del espacio este Sistema muestra la existencia de estructuras solitónicas singulares y regulares. Después de sus colisiones durante su propagación, fueron observados la creación  y el aniquilamiento mutuo (de uno con el otro) de los pulsos a lo largo del nervio. 
Palabras claves. Ecuación de Boussinesq, solitones singulares, neuronas únicas, código neuronal.
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I.  INTRODUCTION
One of key fundamental  problems  in biophysics is to understand how nature  makes to carry  information  from one point to the  other.   It’s more, the  information  without  significant distortion  will travel  along distances  between two considerable long separated  centers. Regarding  the  neural  transmission,  Hodgkin and  Huxley (HH)  in 1952 proposed  a model for nerve pulses based on ion gradients  through  the nerve membrane  conducted  by special ion channels [1]. Subsequently,  Fitz Hugh  proposed a simplified neuronal version of Hodgkin and Huxley model. Nagumo suggested as analogous neuronal,  a nonlinear electrical circuit, controlled  by an equation  system also similar to those of Van Der Pol currents and also  from the point of view of dynamic systems [2].   
However, in varios lines of investigation  concerning nerve pulse propagation  it is shown 
that  the action  potential  can pass though  each other.   The  experiments  do not  show this ever, but  in contrary,  the collision and annihilation  of nerve pulses are observed in real experiments.  Including there is a standard ”collision test” for identification of neurons in brain neurophysiology [3] in synthesis when nerve impulses collide they could annihilate  leaving as residue other  types of nonlinear  patterns.  In this  line of research  we propose a simple modification of Heimburg model in which the solitary  wave structures behave in a manner of macroscopical particles  and they could annihilate,  or conserve their  initial configuration after  collisions. This reduced model is a variant of the Boussinesq nonlinear equation  that support  regular  and singular solitary  traveling  wave solutions and could represent at  least an attempt to solve this crucial problem.
We use the model of Heimburg and coworkers [4] and by applying  the trivial  boundary condition we found some non-classic soliton like solutions i.e singular solutions additionally to the well regular traveling  solitons.  Thus,  in the next section we briefly expose the main features of the nonlinear evolution equation for nerve pulses. In the III section we show that regular and singular soliton solutions with the boundary  trivial condition could appear  and discuss some properties of their interactions for one, two and three soliton solutions.  Finally, conclusions are drawn in section IV.

II. NONLINEAR EQUATION OF MOTION FOR NERVE PULSES

The theory is based on hydrodynamic properties  of a density  pulse in the presence of dispersion.  The equation of motion proposed by Heimburg and coauthors started with the classic sound propagation  equation  in the absence of dispersion along the quasi-unidimensional  axon:

being  the change of density in the membrane,  is the density of the membrane
at physiological condition slightly above of melting transition and , with   the  sound velocity.   The value  is the  dispersion  parameter which sets the scale of the system in order to produce pulses of a few centimeters  width.  
       Thus,  we will assume small changes of the lateral density  of the membrane.  In such a case, we will have a low amplitude  soliton  but  with  enough energy to  overcome the  required  threshold  and evoke the action  potential  in the membrane.   Thus,  in the approximation of small changes in the lateral  density U equation  (1) become



The expression (2) is the well known Boussinesq equation.


III.   REGULAR AND SINGULAR NERVE SOLITON PULSES
For the sake of simplicity, let us introduce  the following changes of variable


The equation (2) then becomes



with  without  lost of generality we can put  and the notation   was used.
One  of the  general  method  for finding soliton  solutions  of eq. (4) were developed  by

Hirota  [5], for which the unknown function is represented  as



A.     One regular and singular soliton signal
Let us now obtain  the one soliton and holon solutions for the nerve signal. For this case, the unknown function  is taken  as

If  then  the regular nerve pulse is represented  by the well known bell soliton



While, if , the singular or holon type of solution is observed



with , the values of  and  can be reparametrized in such a way that we could produce the desirable coefficient values in the Boussinesq equation  (2).
The Figure (1) shows the soliton profiles obtained from expression (7) for the one soliton solution ( 1SS ) for an artificial biomembrane of DPPC. In addition,  in this figure we observe that,  as the soliton amplitude decreases, its width increases.
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FIG. 1: Profiles of one soliton solution with  for different velocity values.  The highest pulse is slower then  other  soliton pulses.

B.     Two and three soliton solutions and their interactions
When analyze two soliton solutions. The unknown function  in the equation (6) has the form
                                    
Where



Here the parameters  are constants  and . Transforming  the variables   as , being   the velocities of the wave packets, , y .  By substituting these expressions in the  eq.  (9) for  and taking  in mind analytical  solutions, it is posible to determine  the value of the parameter 


The relationship  between the velocities    and parameters  are: 


Like for the previous one soliton solution, since amplitudes  are dependent on velocities, the solutions of less amplitude  are moving faster than  the larger amplitude  ones. This property is very different from what happens with the common solitons of KdV and others non linear systems,  where the  behavior  is exactly  inverse.   The  2-soliton  solution  has  the  following analytic  form [6]

 

with   

For the case  the procedure is very similar for example for the  the generatrix function  takes the form

with , for  and  are defined by Eq.(10).


FIG. 2: Interaction of two regular solitons that after collision produce two hole soliton like structure when A < 0. Both  solitons are moving in opposite  directions  to each other.

The sign of the main parameter  in the equation (10) determines  the appearance  of the following asymptotic  types of solutions after mutual  pair collisions.
1.  When  the two types of solutions splits asymptotically  when  to the one

of the available solutions:
 
The parameter velocity region of existence of these regular solutions for definiteness is
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FIG.  3:  Two soliton  solution  for which their  amplitudes are not  the  same.  Both  pulses travel  in opposite  direction  when the parameter 
2. If the coefficient  additionally  to the solutions presented above, could emerge during the splitting  after collisions the holon type of soliton similar to solution (8). 
3.  When  . In this  case we obtain  positive singular  solutions without  any physical sense.
In  figure (2)  we observe  the  mutual  transformation of holons to  regular  solitons  and viceversa.  The figure (3) shows the normal interaction between solitons. The Figure (4) shows us the interaction of three solitons.  

[image: ]
FIG.  4: Three  soliton like structures interacting and  producing  mutual  annihilation and  creation of singular  or regular  solitons.

IV.   RESULTS AND DISCUSSIONS

By introducing  the  slight modification  to  the  nonlinear  term,  we found  an  important characteristics of the  obtained  solutions:  as the  soliton amplitude  decreases, its width  in- creases. For the case of nerve pulses, this is interpreted as follows: as the soliton amplitude decreases,  it possess a smaller energy associated  and  therefore  a smaller amount of phos- pholipids change the state  but even  in this  case, for solitons  with  velocities around  ,  the  corresponding  change in the  membrane  lateral  density  is about  , which means that  nearly  the   of the membrane passes through the phase transition, which is sufficient to overcome the threshold value for triggering an action potential  in the nerve.  During the interactions of the explicit regular and singular soliton solutions we can observe the following types of behaviors:  normal interaction that  means the two solutions after  interactions pass each other  with small change in their phase; annihilation  of solutions.   We can say that  the  creation  and  annihilation  of soliton  pulses is possible to  take  place and in some sense map the experimental  facts. 
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