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Abstract
For decades, researchers have been studying the unit commitment problem in electrical
power generation. To solve this complex, large scale and constrained optimization
(primal) problem in a direct manner is not a feasible approach, which is where
Lagrangian relaxation comes in as the answer. The dual Lagrangian problem translates
a relaxed problem approach, that indirectly leads to solutions of the original (primal)
problem. In the coordination problem, a decomposition takes place where the global
solution is achieved by coordinating between the respective subproblems solutions.
This dual problem is solved iteratively, and Lagrange multipliers are updated between
each iteration using subgradient methods. To tackle, time-consuming tuning tasks
or user related experience, a new adaptative algorithm, is proposed to better adjust
the step-size used to update Lagrange multipliers, i.e., avoid the need to pre-select
a set of parameters. A results comparison against a traditionally employed step-size
update mechanism, showed that the adaptive algorithm manages to obtain improved
performances in terms of the targeted primal problem.

Keywords: Hydro-Thermal coordination, Lagrangian relaxation, Lagrangian dual
problem, Lagrange multipliers, Subgradient methods

1. Introduction

The objective of short-term hydro-thermal scheduling is the optimization electricity
generation [1], obtaining an optimal generation dispatch or close to ideal of all the
thermal and hydro units available in a system, so that the total operation cost is
minimized within horizons ranging from one day to one week (168h), taking into account
the entire system and its individual constraints [2]–[5], the planning period (discrete time-
step) is set from hour to hour [5]. Therefore, we can see why Unit Commitment (UC)
problem is very important for electricity producers and one of the most difficult to solve
for power system engineering [6]. It results in a complex mathematical programming
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problem [1] that has been the subject of intense research in the area of operation
and optimization of electric power systems over the last decades [1], [2], [7], [8]. The UC
problem decides the dispatch policy of the thermal units in such a way that the total cost
(operating cost, starting cost and shut down cost) is minimal over a pre-defined time-
horizon. In addition to achieving the minimum production cost, a series of operational
constraints need to be fulfilled, thus reducing the freedomof choice to turn a thermal unit
on or off. With this regard we are primarily speaking about the load balance constraint,
i.e., ensure that our load demand is satisfied, spinning reserve constraints, minimum
connected time, minimum time off, generation capacity limits, group restrictions, water
restrictions, etc. [9].

To solve the optimal short-term UC, a broad spectrum of methods has been tried, and
they can be generally divided into two categories: heuristic methods (trial and error) and
deterministic methods [5], [9]. In the realm of conventional approaches we can highlight
Benders Decomposition [10], Lagrangian Relaxation [1], [2], [11], Dynamic Programming
(PD), Nonlinear Programming [12], Augmented Lagrangian [13], mixed integer linear
programming [14], nonlinear programming [15], among others.

A consolidated trend has seen a growing application of evolutionary methods and
methods of artificial intelligence, in addition to new deterministic heuristics. Hence, we
can mention: neural networks [16], Cuckoo Search [17], Differential Evolution [18], [19],
Improved Bacterial Foraging Algorithm [20], among many others. However, in general
these population-based methods require a significant computational effort to solve the
problem for an hourly discretized weeklong time-horizon, i.e., for large scale-problems
(with a high number of dimensions) its effectiveness drops. In addition, it can frequently
end up finding only suboptimal solutions [4], [15]. However, these metaheuristic search
methods are based on a population to find an optimal solution, turning them into large-
scale problems (many dimensions and population agents), and moreover they need
to be performed several times to find an optimal solution, as premature stagnation or
convergence may occur.

Due to the presence of multiple sets of constraints decomposition techniques appear
as natural techniques to consider to solve this problem [1], [8]. Consequently, Lagrangian
Relaxation (LR) based on decomposition techniques appears as a natural and preferred
manner to tackle the short-term hydro-thermal coordination problem. The fundamentals
behind LR, is to use Lagrangemultipliers to relax system constraints such as demand and
reserve requirements. The primal problem is then converted into a two-level structure.
Given a set of multipliers, all subproblems are resolved at the low level, one for each
unit, and the multipliers are updated at the high level. Multipliers are obtained by solving
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the dual problem and the feasibility of solving the primal problem is usually obtained
based on the dual solution [2], [3].

To update Lagrange multipliers a common approach is to apply subgradient meth-
ods, where the step-size update procedure represents a sensible decision, and often
depends on ad-hoc testing. For example, in [21], [22] evolutionary programming with a
Gaussian mutation is used to update the multipliers and in both, parameters are chosen
considering convergence criteria.

In this sense, to avoid user dependence concerning parameters choice, an adaptative
algorithm is proposed in this work. As its name suggests, the step value is dynamically
updated, and afterwards the Lagrange multipliers so that the dual function converges
to its optimum in a pre-arranged number of iterations. Moreover, in order to validate
this algorithm, the same is tested against a traditional step-size approach in a scenario
where only unit costs are considered.

The rest of this paper is organized as follows. Section 2 provides a brief description
of the primal problem. Section 3 explains the Lagrangian dual problem. Section 4 intro-
duces subgradient methods and the motivation for the proposed algorithm, introduced
in Section 5. Results and discussion are provided in Section 6, and finally, Section 7
presents the conclusion of this work.

2. Primal Problem

The optimal unit commitment problem is a deterministic problem, that can be under-
stood as the task of establishing a map of feasible operations for each generation unit
available in an electrical power system at the lowest cost for a predefined time horizon,
in order to satisfy the expected load demand and a set of other system restraints.
Typically, the time horizon considered is from one to seven days, and the discrete time-
step (in which decisions are made) is a one-hour period. This problem is treated as
deterministic and whenever it is necessary to include stochastic quantities such as load
diagram and reservoir inflows, their expected values are used.

In this manner, a primal problem (𝑃 ) is non-convex and non-linear and can be
mathematically formulated as shown in equations (1)-(4). The total operating cost for all
resources(units) and over the entire considered period, 𝐾 , is defined in equation (1), and
is the problem’s objective function, i.e., evaluates the performance of each admissible
solution. Where the cost function, 𝐶𝑖𝑘(𝑥𝑖,𝑘−1, 𝑝𝑖𝑘, 𝑢𝑖𝑘), is a measure that evaluates the
decision made in each state, since there is an operating cost associated with the state
transition (from 𝑥𝑖,𝑘−1 to 𝑥𝑖𝑘), which delivers the power 𝑝𝑖𝑘, determined by the control
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decision 𝑢𝑖𝑘, for each unit 𝑖 at time 𝑘. Secondly, equation (2) translates the (global)
demand–supply balance restraint. In turn, equation (3) represents the state equation of
each resource 𝑖 at a time 𝑘. This equation allows us to obtain the state of each resource
𝑥𝑖𝑘 and its contribution to satisfy demand 𝑝𝑖𝑘, whatever the decision 𝑢𝑖𝑘. Last of all, in (4)
the domain of admissible values for the control variables, as well as for the initial and
final state are defined, for each individual resource 𝑖.

𝑝Min
𝑢

𝑘

∑
𝑘=1

𝐼

∑
𝑖=1

𝐶𝑖𝑘(𝑥𝑖,𝑘−1, 𝑝𝑖𝑘, 𝑢𝑖𝑘) (1)

Subject to:

𝐼

∑
𝑖=1

𝑝𝑖𝑘 = 𝐷𝑘 𝑘 = 1,… ,𝐾 (2)

and wherein:

(𝑥𝑖𝑘, 𝑝𝑖𝑘) = 𝐴𝑖𝑘(𝑥𝑖,𝑘−1, 𝑢𝑖𝑘) 𝑖 = 1,… , 𝐼 𝑒 𝑘 = 1,… ,𝐾 (3)

𝑢𝑖𝑘 ∈ 𝑈𝑖𝑘 𝑥𝑖0 ∈ 𝑋0
𝑖 𝑥𝑖𝑘 ∈ 𝑋𝐾

𝑖

𝑖 = 1,… , 𝐼 𝑒 𝑘 = 1,… ,𝐾 (4)

Formulation nomenclature:

𝐾 : total number of hours

𝐼 : total number of resources

𝐶𝑖𝑘: cost function associated with resource allocation 𝑖 at time 𝑘
𝑥𝑖𝑘: resource state 𝑖 at time 𝑘
𝑝𝑖𝑘: power output by resource 𝑖 at time 𝑘
𝑢𝑖𝑘: control (decision) variable for resource 𝑖 at time 𝑘
𝐷𝑘: load demand at time 𝑘
𝐴𝑖𝑘: state function associated with each resource 𝑖 at time 𝑘
𝒰𝑖𝑘: control variables (decision) universe for resource 𝑖 at time 𝑘
𝑋0
𝑖 : resource 𝑖 initial state

𝑋𝐾
𝑖 : resource 𝑖 final state

Although the objective function is a separable function in resources and hours,
this problem, by its formulation and due to collective constraints, does not allow this
separability, providing extreme complexity to this minimization problem. In other words,
the optimum value cannot be found by the sum of the various sub-optimal (separately)

DOI 10.18502/keg.v5i6.7093 Page 731



 
ICEUBI2019

results from each resource. Thus, we are facing a problem of unrestrainable dimension,
for which a direct approach is not viable.

The primal problem defined in this study, approaches the short-term hydro-thermal
coordination considering the generation resources available to the electric utilities
company, EDP, and the national load that needs to be served during a weekly time-
period.

3. Lagrangian Relaxation

As discussed, the primal problem is difficult to solve using conventional nonlinear
optimization techniques. A preferable path is to decompose the problem constraints,
and transfer them to the objective function, i.e., to solve the dual problem, rather than
solving the primal problem directly. Knowing beforehand that the optimal solution of
the relaxed problem is a lower bound (good estimate) of the optimal solution of the
initial problem [2], [8], [23].

This is achieved by relaxing the constraints, i.e., weakening of the problem (𝑃 ), that in
practical terms means open the possibility to breach the imposed constraints. However,
relaxed restrictions are not completely ignored since its violations are linearly penalized
in the Lagrange function (an added cost associated with violating each constraint).

So, we can write the Lagrange function (ℒ ) for problem (𝑃 ), by relaxing its load-
balance constraint as expressed in equation (5), where 𝜆 is the Lagrange multiplier
vector associated with the load-balance constraint, equation (2). Lagrange multipliers
are expressed in units of cost per unit of the parameters of their associated constraint,
in this case ($/GW).

ℒ(𝑥𝑖,𝑘−1, 𝑝𝑖𝑘, 𝑢𝑖𝑘, 𝜆) =
𝐾

∑
𝑘=1

𝐼

∑
𝑖=1

𝐶𝑖𝑘(𝑥𝑖,𝑘−1, 𝑝𝑖𝑘, 𝑢𝑖𝑘) +
𝐾

∑
𝑘=1

𝜆𝑘(
𝐷𝑘 −

𝐼

∑
𝑖=𝑢

𝑝𝑖𝑘)
(5)

That is, to now solve the unit commitment ℒ is minimized, ((𝐿)Min
𝑢 ℒ(𝑥𝑖,𝑘−1, 𝑝𝑖𝑘, 𝑢𝑖𝑘, 𝜆),

subject to system constraints (3)-(4).

3.1. Lagrangian dual problem

The Lagrangian dual problem is obtained by forming (ℒ ), and its solution provides
the primal variables as functions of the Lagrange multipliers, which are labeled dual
variables. Hence, the new problem is to maximize the objective function with respect
to the multipliers under the derived constraints on the dual variables. Implying by
decomposition, that each resource becomes a single entity and is individually optimized,
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rather than a combined optimal resource allocation. Therefore, the dual function is
defined in equation (6), also subject to constraints (3)-(4), presenting concave and sub-
differentiable traits (resulting in inferiorly limited variables).

𝑞(𝜆) = Min𝑢ℒ(𝑥𝑖,𝑘−1, 𝑝𝑖𝑘, 𝑢𝑖𝑘, 𝜆) (6)

Given that Lagrange’s dual function is a concave function, a local optimum is also
the function global optimum. Lagrange dual-function subgradients play an important
role in maximizing the dual function - the easily derived constraint-deviations vector
is a sub-gradient of the Lagrange dual function at a point defined by the values of 𝜆.
Consequently, we can define the subgradient of the dual function, 𝑔 as follows:

𝑔 = 𝐷𝑘 −
𝐼

∑
𝑖=𝑢

𝑝𝑖𝑘 (7)

Moreover, by the weak duality theorem, the optimal value of the Lagrange dual
problem 𝑞(𝜆∗)) and the optimal value of the primal minimization problem 𝑝(𝜆∗)) are
related by 𝑞(𝜆∗) ≤ 𝑝(𝜆∗)), and difference between the values is called, duality gap.
Implying that the dual problem offers a good indirect root to solve the primal one.

For all the reasons above, this new approach to the problem is extremely advanta-
geous, since it lessens the computational burden of the primal problem.

4. Subgradient Methods

As we saw earlier, obtaining the Lagrange dual function optimal value is hand-in-
hand with the Lagrange multiplies choice/update method, i.e., at the outset this choice
determines how close we are to the solution of the dual problem and, ultimately, how
close are we from reaching the primal problem best solution. To perform this task
several methods are described in literature [5], however, in particular regarding our
problem subgradient methods prevail as the most fitting solution by achieving higher
accuracies. Further benefits include, their simplicity, as well as the computational ease
with which the Lagrange dual function subgradient (solution deviation from the imposed
constraints) is calculated.

These methods update the multipliers according to the subgradient direction and
in a proportional manner to the violation of the corresponding constraints. Besides,
a distinctive trademark of these methods concerns the step-size update heuristic,
where again several approaches have been followed [5]. However, a downsize of these
conventional updating heuristics is that a long-winded trial and error procedure, as well
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as a highly specialized operator is frequently required. The simplest and most common
subgradient method formulation is given below by:

𝜆𝑣+1 = [𝜆
𝑣 + 𝑠𝑣 𝑔𝑣

‖𝑔𝑣‖]
+

(8)

where 𝑔𝑣 is the subgradient 𝑔(𝑝𝜆𝑣), 𝑠𝑣 is a positive scalar that defines the step-size at
the current iteration 𝑣, and lastly, [.]+, represents the projection in the set of feasible
values Λ. Nonetheless, there is no guarantee that after iteration 𝑣 + 1, independently
from the chosen step-size, the dual function value will actually improve (walk towards
the optimal dual function value), meaning that in some occasions we will have:

𝑞 ([𝜆
𝑣 + 𝑠𝑣 𝑔𝑣

‖𝑔𝑣‖]
+

) < 𝑞(𝜆𝑣), ∀ 𝑠 > 0 (9)

Though, if the step value is sufficiently small, the distance between the obtained point
in the current iteration and the optimum solution can always be reduced. The next
proposition offers an estimate for the step-size domain (range):

P1 If 𝜆𝑣 does not lead to the optimum value of the dual function then, for 𝜆∗, which
corresponds to the dual function optimum value, the inequality, ‖𝜆𝑣+1−𝜆∗‖ < ‖𝜆𝑣−𝜆∗‖,
is valid for all step-sizes, 𝑠𝑣 ∈]0, (𝑞(𝜆

∗)−𝑞(𝜆𝑣))
‖𝑔𝑣‖ [. Therefore, suggesting a step-size equal to

the middle value of the inequality range, i.e., 𝑠𝑣 = (𝑞(𝜆∗)−𝑞(𝜆𝑣))
‖𝑔𝑣‖ .

But since it requires knowledge of the dual function optimal value 𝑞(𝜆∗), which
is exactly the unknown we want to find, this approach is unviable in our case and
we resort to heuristics that determine the step-size. In this regard, a popular choice
fells over decreasing step-size rulebased approaches, much due to its simplicity and
effectiveness.

So, considering a decrease on step-size, 𝑠𝑣, towards zero, meaning that lim𝑣→∞ 𝑠𝑣 =
0 ∧ 𝑠𝑣 > 0, while at the same time satisfying ∑∞

𝑣=1 𝑠𝑣 = ∞, i.e., the method can ”travel”
as far as possible (up to infinity) in order to converge to the optimal dual function value.
Thus, under these assumptions, we can infer a 2nd proposition (P2), from which we can
conclude that it is possible, by appropriately updating the step-size, to reach the dual
function maximum value [15].

P2 For the sequence of all multiplier’s values {𝜆𝑣} we have: lim𝑣→∞𝑀𝑎𝑥 𝑞(𝜆𝑣) = 𝑞∗.
However, this analysis does not lead to a finite procedure, pointing an initial value

of the step, as well as a mechanism for decrementing it to zero. As such, for compar-
ison purposes with the proposed heuristic in this work, a widely used expression is
introduced in equation (3), to update the step-size at each iteration 𝑣.

𝑠𝑣 = 𝑎1
1 + 𝑣 × 𝑎2

(10)
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Where, 𝑎1 and 𝑎2 are control parameters of the heuristic process. Moreover, the chosen
initial step is a highly sensitive matter, since small initial steps can prevent the method
from reaching the desired optimum value in a reasonable number of iterations. Whereas,
using a large initial step may cause the method to oscillate erratically in the early phase,
leading to poor convergence. As a result, although the obtained value is stabilized, it
can still be improved by running further iterations. In addition, selecting the values to
assign to parameters 𝑎1 and 𝑎2 is also a difficult task, with a direct influence on the
obtained results.

Therefore, we can conclude that it is an intrinsically lengthy (experimentation-based)
heuristic process that is highly dependent on the user’s experience. Precisely to mitigate
this scenario, a new algorithm will be proposed next.

5. Proposed Adaptative Algorithm

Motivated by the previously exposed shortcomings on the classical subgradient opti-
mization, an adaptative heuristic is proposed, in order to automatically update the
Lagrange multipliers, thereby removing the need to rely on user past experiences or
time-consuming trial and error tasks. This means that the step-size, 𝑠𝑣, is automatically
determined (avoiding the time costly trial and error procedures) by the adaptative
algorithm when solving the dual problem with a subgradient method. The different
stages of the algorithm and the rationale behind them are detailed below:

1. Define the initial step-size, 𝑠0 = 1, and choose an initial value for the dual variable
vector, 𝜆0;

Then compute the initial dual function and subgradient values, 𝑞0(𝜆0) and 𝑔0(𝑝𝜆0),
respectively;

2. Update Lagrange multipliers according to equation (8)

3. Determine the new step-size:

If 𝑞𝑣(𝜆𝑣) > 𝑞𝑣−1(𝜆𝑣−1) then

𝛼 ∈ 𝑣+𝛿 (1)

Else

𝛼 ∈ 𝑣−𝛿 (1)

End

where,
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𝑣+𝛿 (1) = {𝛼1 ∶ 1 < 𝛼 < 1 + 𝛿}

𝑣−𝛿 (1) = {𝛼2 ∶ 1 − 𝛿 < 𝛼 < 1}

And the step-size is given by:

𝑠𝑣 = 𝛼𝑠𝑣−1

4. Compute the current (iteration) dual function and subgradient values, 𝑞𝑣(𝜆𝑣) and
𝑔𝑣(𝑝𝜆𝑣);

If the termination criterion is met:

Terminate the algorithm;

5. Proceed to the next iteration, 𝑣 = 𝑣 + 1;

Return to (2);

Regarding the (above) adaptative algorithm, the following clarifications are made:

In (1) the initial dual variable vector positioning only impacts the convergence speed of
the subgradient method, thereby it can be considered arbitrary. On the contrary, for the
step-size update expressed by equation (10), this initial positioning needs to be nearby
an optimum value (derived from past experiences), in order to maintain the method’s
performance, translating an important advantage of the proposed strategy.

In turn, stage (3) depicts the original step-size update mechanism, where the rationale
behind it is to dynamically update the step based on the dual function value, i.e., if this
value improves then the step should be augmented, in contrast if this value does not
improve then the step should be diminished. Moreover, to prevent that a large step-
size increases the distance between the new point and the optimum solution, this
value should be increased smoothly, this fact is less sensitive when reducing step-size.
Additionally, it was found that the optimal domain for variables 𝛼1 and 𝛼2 are [1.01, 1.05]
⟹𝛿 = [0.01, 0.05] and [0.83, 0.95]⟹𝛿 = [0.05, 0.17], respectively.

Lastly, the stop criterion mentioned in (4) is traditionally to run a specific number of
iterations, which was also the case in this work.

6. Numerical Results

The behavior of the subgradient method is analyzed in this section, where the step
value is updated according to the adaptive algorithm proposed in section 5, and
then benchmarked against a classical approach, where the step-size is updated using
equation (10), and consequently the Lagrange multipliers. In the selected case study,
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unit costs are the sole result from the associated generation costs, with no other parallel
costs (e.g. associated with some predefined strategy).

As previously mentioned, the unit commitment (primal problem) corresponding to the
solution of the Lagrange dual problem does not always lead to a feasible solution. As
such, the average subgradient norm, ‖𝑔(𝑝𝜆)‖/𝐾 , is defined as quantitative metric of how
a solution is accurate in terms of the primal problem. Meaning that, the lower the value,
the closer we will be to a good solution, and where a value in the order of 0.5% of the
peak load typically means that a good solution to the primal problem was found.

The first pair of figures will display the evolution of the dual function 𝑞(𝜆)) value
and the second pair, the evolution of the average subgradient norm, ‖𝑔(𝑝𝜆)‖/𝐾 over
the course of iterations. Figure 1 a) and 2 a) illustrate the behavior of the Subgradient
method using a classical step update expression, and Figure 1 b) and 2 b) using the
new adaptive algorithm.

a) b) 

Figure 1: a) Evolution of the dual function value, 𝑞(𝜆), and its step value, using equation (10), with the following
parameter values: solid line, 𝑎1 = 20, 𝑎2 = 2 and with a line dashed, 𝑎1 = 10, 𝑎2 = 1.5. b) Evolution of the
dual function value, 𝑞(𝜆), and its step value, using the adaptative algorithm, with the following parameter
values: 𝛼1 = 1.05, 𝛼2 = 1.10.

Regarding Figure 1 a) we can observe: (1) Achieving convergence in more or less
iterations depends on the choice of the different parameters; (2) Using a smaller initial
step-size increased the number of iterations need to achieve convergence (dashed
line); (3) The use of a slightly larger initial step leads to some oscillation, still, without
compromising convergence, represented by the solid lines; (4) The step-size evolution
is strictly decreasing, and the rate of descent depends on the considered parameters.

With respect to the adaptive algorithm, the evolution of the dual function increases
as the value of the step increases, as shown in Figure 1 b), until a value is reached
in the vicinity of the maximum dual function value. From this point onwards, the step
value decreases towards zero, but then again having a slight increment whenever
the dual function value doesn’t improve when compared with the previous iteration.
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This dynamically adjusted (based on the dual function current value) step-size, clearly
contrasts with the monotone evolution that occurs with the traditional step update
formulation.

We can verify that in both cases, the dual function maximum value was reached, with
regard, and difference resides in the number of iterations necessary to the convergence
(which was relatively similar).

By looking at Figures 2 a) and b), and with respect to the obtained minimum average
subgradient norm, we can see that both processes lead to similar results, with a value
close to 23 MW by the classical step-size update approach and 21 MW using the
proposed adaptative algorithm. These values represent ∼0.53% of the peak load which,
as mentioned, usually leads to a good solution to the primal problem. Besides, note
that, once the dual function maximum value or its proximities are reached, the average
subgradient norm has not yet reached its minimum value and continues to oscillate
between several values over the next iterations.

This can be explained since small variations in the multipliers can cause large
variations in the solutions in terms of the primal problem. Thus, even obtaining the
maximum value of the dual function we may not end up with the best solution in terms
of the primal problem.

 

a) b) 

Figure 2: a) Evolution of the average subgradient norm, ‖𝑔(𝑝𝜆)‖/𝐾 , corresponding to the values of the
dual function represented in Figure 1 a) (classical approach). b) Evolution of the average subgradient norm,
‖𝑔(𝑝𝜆)‖/𝐾 , corresponding to the values of the dual function represented in Figure 1 b) (proposed adaptative
algorithm).

Lastly, regarding the solution in terms of the primal problem (Figure 3), corresponding
to the solution of the dual problem for the lowest average subgradient norm value. The
same was obtained using the adaptive algorithm, since is easy to understand from
previous figures, that all primary solutions would be similar, so their presentation is
unnecessary. The algorithm used in solving the primal problem based on Lagrangian
relaxation, as we saw earlier does not lead to an optimal solution. The obtained primal
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solution reveals the existence of a Lagrangian Duality. That is, we can say that good
results were obtained for the generation profile (solid line in Figure 3), but this profile
does not match the given load profile (dashed line almost coincident with the solid line
of Figure 3). After solving the dual problem, several methods have been used to look
for feasibility [5]. However, if we succeed when solving the dual problem then we can
get, in terms of the primal problem, also a good solution. In fact, in some cases it is
enough to carry out an economic dispatch of thermal units to obtain a (close) feasible
strategy, which is exactly what happens in the presented case (the generation profile
obtained coincides with the given load profile).

 

Figure 3: Solution in terms of the primal problem. In the upper portion an almost coincidently solid green and
dashed red plots: the obtained generation profile and the load demand, respectively. Dotted orange line:
Maximum generation capacity of the affected thermal units. Dashed magenta plot: thermal units generation
profile. Dash-dot blue plot: hydro units generation profile.

7. Conclusion

The proper choice of the Lagrange multipliers has an important associated cost. This
cost may not be constant due to the dynamic characteristics of the problem (load
restrictions). To update the multipliers, subgradient methods are amongst the trendiest
solutions. The step-size update mechanism is a vital factor on these methods func-
tioning, and classic approaches are heavily dependent upon user’s experience and
fine-tuning procedures (choosing the appropriate parameters). With these limitations
in mind, a novel adaptative algorithm is proposed with an important advantage of not
requiring parameter choices based on experimentation. Subsequently, a classic update
mechanism was compared against the proposed adaptative algorithm, where results
showed an improved performance over classic formulas. This fact is justified by the
algorithm’s ability, to dynamically adapt the step value according to the dual function
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value, i.e., we can see that during the opening iterations step value is incremented
until we approach the vicinities of the dual function maximum, from then onwards
the step evolves dynamically and adapted to the current dual function value, allowing
convergence to the optimal dual function value and to average subgradient norm that
translate a feasible primal solution. Additional test scenarios may be considered for
future works.
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