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Abstract
Direct laser deposition (DLD) is a modern prototyping manufacturing technology, which
can directly build full-density and high-performance complex metal parts This paper
presents an investigation of the influence different scanning strategy on microstructure
and mechanical properties of DLD 316L stainless steel sample. The results showed that
formation of fine equiaxed austenitic structure with average grain size of the dendritic
cells in 1.2-1.7 μm. Inter-track idle time has directly influence on cooling rate, grain size
and mechanical properties. It was shown that the decreasing of inter-track idle time
from 4.37 to 0.75 s decreases the ultimate tensile strength from 729 to 686 MPa. For
obtaining high mechanical properties of samples or recovering surfaces it is necessary
to choose scanning strategy along the largest dimension of the detail.

Keywords: X-ray analysis; Electron microscopy; Stress/Strain measurements; Iron
alloys; Laser/Powder methods.

1. Introduction

Direct laser deposition (DLD) is powder-fed technology that is differ of conventional man-
ufacturing processes in that thematerial-metallic powder is added to form a desired solid
geometry instead of subtracted, as in conventional machining processes [1]. As one of
the advanced additive manufacturing technologies, it can be used to fabricate functional
details of complex shape that are difficult or impossible process by conventional machin-
ing processes [2, 3]. Such details can be characterized with fine structure (grain size
less than 2 μm), the presence of crystallographic texture and porosity. DLD is also used
to recover surface of metallic components applying in the aerospace, defense, power
generation, and general manufacturing industries. It is important to understand how the
microstructure and properties of the details depend on the characteristics of the metallic
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powders and the DLD process parameters. There are special requirements (homoge-
neous chemical composition, spherical shape with particle size from 45 to 80 µm) which
are related to themetallic powders due to design feature of the powder delivery nozzles.
In modern machines, the powder nozzles diameter depends on the type of construction
(lateral or off-axis, continuous coaxial, discontinuous coaxial) and varies from 1.5 to 5
mm. To prevent the narrow nozzle opening from ”clogging” the powder must have good
flow rate and compaction, which is ensured by the spherical shape of the particles.
Chromium-nickel austenitic stainless steel 316L is of particular interest as a structural
material due to its good ductility, toughness and corrosion resistance. In many papers
[1-10] 316L additive manufactured stainless steel was an object of research. Mechanical
properties, microstructure, lattice defects in DLD details depend on deposition process
parameters (laser power, powder feed rate, traverse speed, scanning strategy). These
parameters effect on size, temperature, cooling rate and direction of heat removing of
melted pool [4, 6]. The present study focuses on themicrostructural features, texture and
mechanical properties (tensile strength and hardness) of DLD 316L stainless steel and its
dependence on different inter-track idle time. The investigation of boundary between
carbon steel substrate and 316L welded layers were carried out. These effects were
investigated by fabricating dumb-bell and brick bulk samples while holding other DLD
process parameters constant.

2. Materials and Experimental Procedures

In the present work a gas atomized 316L powder was used to fabricate the experimental
parts. The powder has a spherical shape (Fig. 1) with aspect ratio 1,0-2,0 (measured as
the ratio of the largest to the smallest particle size 𝑙max

𝑙min
), particle size in range 35-55 μm.

The chemical composition was uniform and presented at the Table 1.

Table 1: Composition of the 316L steel powder.

The content of alloying elements, w%

Cr Ni Mo Mn Si C Fe

17,3±1,0 11,7±0,6 2,5±0,3 1,7±0,2 0,9±0,25 <0,03 bal.

Carbon steel substrates with dimensions of 170×10×70 mm (L×W×H) were used as
building platforms, and the plate compositions are shown in Table 2. The surface was
polished and treated with acetone to consider the effect that the surface morphologies
might have on the fabrication process.

DOI 10.18502/keg.v1i1.4394 Page 83



 

The Ural school-seminar of metal scientists-young researchers

Figure 1: Particles morphology of the 316L steel powder.

Table 2: Composition of carbon steel plates.

The content of alloying elements, w%

C Mn S P Fe

0,3±0,1 <0,3 <0,03 <0,01 bal.

In this work a coaxial nozzle (diameter 1,9 mm) was associated with a 3 axes machine
and a 3500 W fiber laser LS-3.5 (Ytterbium Fiber Laser System) for which diameter was
370 μm and thewave length was 1064 nm. A shielding gas argon flow carries the powder
with feed rate 0,013 g/s while a secondary gas argon flow shapes the powder stream.
The laser beam was focused on the steel plate surface while the working distance
between the nozzle and the focus plan remains constant at 3 mm. In order to obtain a
part with a good dimensional accuracy and a uniform surface [5, 6], the diameter of laser
spot was 0,5 mm and the thickness single-track laser cladding was 0,2 mm. The single-
track overlap ratio was set as 15%, which has been successfully applied to accurately
fabricate metal parts by DLD [7].

Energy density function ψ [8, 9] was used to optimize the parameters for DLD-process
of 316L stainless steel for reason that the scanning speed and laser power, that were
recommended in other studies [8, 10] can not be applied due to other possibilities of the
machine used in this work. Thus laser power 250 W and scanning rate 16 mm/s were
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selected and energy density function 156 J/mm² was calculated and compared with 168
J/mm² from other study [8] as fine indicator.

In order to investigate the influence of inter-track idle time on microstructure and
mechanical properties dumb-bell and brick bulk samples were fabricated (Fig. 2) and
lengthwise (Fig. 3a), transversal (Fig. 3b) and crosswise (Fig. 3c) scanning strategy were
applied.

 

Figure 2: Dumb-bell (a) and brick (b) bulk samples.

Bulk samples were cut and machined to standard tensile test samples with 70 mm
length, 10 mm width and 1 mm thickness for the tensile test that were examined using a
Zwick Z250 tester to evaluate the tensile properties at room temperature.

Small samples from middle part were polished with colloidal silica suspension for
Optical/SEM/EBSD investigations. The microstructures, crystallographic texture and ori-
entation from these samples were examined using optical microscopy (OM) Neophot-
30 and scanning electron microscopy (SED) TESCAN VEGA LMH equipped with an
electron back scatter diffraction (EBSD) detector Standard metallographic techniques,
optical microscopy and electron scanningmicroscopywere usedwith the samples being
etched with HCl-FeCl3-alcohol electrolyte. Vickers hardness tests of samples were also
carried out with a DIGI-TESTOR 930 hardness tester to evaluate the uniformity of the
microstructure. The standard tensile test pieces of DLD samples.
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Figure 3: Lengthwise (a), transversal (b) and crosswise (c) scanning strategy.
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3. Results and Discussion

At the Fig. 4 typical X-Ray Diffraction pattern of a DLD 316L stainless steel samples is
presented. The diffraction peaks indicate that the material consists of a pure austenitic
phase.

Figure 4: X-Ray Diffraction pattern of a DLD 316L stainless steel samples.

When the content of Cr and Ni is equal to 17 and 11 wt.%, a martensite temperature is
low (up to -100∘ C), therefore, the predominance of the formation of the austenitic phase
during the entire crystallization process contributes to the formation of a single-phase
structure of the samples.

A representative set of micrographs demonstrates the effect of scanning strategy on
the microstructure of the stainless steels fabricated by DLD is presented in Fig. 5. It can
be observed from Fig. 5(a) that the solidification microstructure in the cross-section of
the stainless steel fabricated at the lengthwise strategy, was homogeneous and dense
without the presence of any pores. At low magnification there are arc-shaped interface
layers arranged in series one above the other and overlap of tracks in one layer in the
form of vertical thin bands. The obtained sample had fine equiaxed austenitic structure
with average size of the dendritic cells in 1.2±0.2 μm. For comparison, themicrostructure
of the stainless steel fabricated at the transversal strategy is demonstrated in Fig. 5(b)
where a noticeable change in the morphology of the microstructure can be observed.
There are two types of crystals: fine columnar and fine equiaxed austenitic cells with
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average size of 1.7±0.3 μm in width and of 20 μm in length. In this case at the microstruc-
ture of transversal sample another cross-section of austenitic cells (length instead of
wide) can be observed. Fig. 5(c) shows mixed structure in the crosswise sample. The
average size of fine equiaxed dendritic cells was 1.4±0.2 μm. The dendritic morpholo-
gies of all samples are all composed almost fully of cells, and all the dendrites have
transformed into cells. Difference in average size of dendritic cells was not high and
depends on cooling rate. At the paper [11] the effect of energy density and the cooling
rate on the primary cellular arm spacing were studied. It was found that as energy
density monotonously increases from the level of 2.1 J/mm2 to 6.1 J/mm2 the values
of cooling rate during solidification of alloy monotonously decrease from 4.8·106 K/s
to 2.6·105 K/s and the primary cellular arm spacing increases from 0,5 µm to 1,3 µm.
Thus approximately cooling rate of 105 K/s at lengthwise sample led to the formation of
dendritic cells with 1,2 µm size, 104 K/s at the transversal sample led to the formation of
dendritic cells with 1,7 µm size and 104-105 K/s in crosswise sample led to the formation
of dendritic cells with 1,4 µm size.

 

Figure 5: Microstructure at the DLD- lengthwise (a), transversal (b) and crosswise (c) samples.
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Grain size and crystallographic orientation of all samples were quantified by electron
back scatter diffraction (EBSD) and presented at Fig. 6 respectively. The various colors
correspond to orientation of grains with relation to crystal lattice, and each color corre-
sponds to the unique combination of Euler angles.

The majority of grain boundaries were found to exhibit very low misorientation angles
(1∘-5∘) indicating a near-monocrystalline texture (Fig. 6 d,e,f). The EBSD set of micro-
graphs were presented at Fig. 6 (а, b and c). White color of boundary at Fig. 6 (a) cor-
responds the overlap between of tracks at different layers at lengthwise sample and at
Fig. 6 (b) white color corresponds boundary of layers at transversal sample. It was found
that the grain size of accentuated in yellow color areas was bigger than in other area of
the samples: 40-45 µm against 70-90 µm. Inter-track idle time directly effects on cooling
rates, bulk temperature and melting pool size and thus the transient temperature distri-
bution of the sample at DLD process [3, 13]. When the first track was welded, the laser
turns and scan in the opposite direction, melting the second track with predetermined
overlap. At the overlap area part of first track remelted and closed area heat affected.
At the heat affected area metal could be quenched and tempered. Scanning strategies
were chosen so that within one layer the laser beam scanning along the length (length of
one track was 70 mm) or along the width (length of one track was 12 mm). If the length of
one track is shorter, inter-track idle time smaller and the laser beam faster returns to its
previous position. In this way, adjacent areas more heat affected and heat removing into
the sample during crystallization was reduced. Such affect have influence on cooling
rate that decreased which leads to an increase of austenite grain. It can be calculated
as a ratio of length of track and scanning rate. Thus inter-track idle time was 4,37 s in
lengthwise sample and 0,75 s in transversal sample. Thus, the lengthwise sample had
smaller heat affected in compare to the transversal sample that affected to the final grain
size and the mechanical properties of these samples.

Lengthwise sample (Fig. 2a) has the higher yield strength and ultimate tensile stress in
comparing with transversal samples strength (Table 3). Crosswise sample has medium
yield strength 595 MPa, ultimate tensile stress 685 MPa and high elongation 31 %.
Lengthwise sample has higher mechanical properties due to bigger inter-track idle time
– 4,37 s against 0,75 s for transversal sample.

The mechanical properties of DLD experimental samples higher than other DLD 316L
stainless steel studies. The investigation of boundary between carbon steel substrate
and 316L welded layers showed diffusion of Cr, Ni, Mn and Mo into substrate to a depth
of 250 μm. The formation of this intermediate layer indicates that DLD process can be
applied for recovering of worn surfaces of carbon steel details.
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Figure 6: EBSD pole map and misorientation angle distribution of austenite phase of the lengthwise (a,d),
transversal (b,e) and crosswise (c,f) samples.
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Table 3: Tensile properties of investigated DLD samples and their comparison with quenched and as well
as other DLD studies [9, 15].

Sample YS, MPa UTS, MPa δ, % HV

Lengthwise 653±19 729±21 25±4 238±3
Transversal 574±24 686±39 24±8 240±3
Crosswise 595±7 685±21 31±2 234±5
DLD/other studies
[3, 13]

330-395 540-625 35-85 -

316L (cast) 240-270 530-560 50-55 -

4. Summary and Conclusions

Experimental samples were obtained using 3 different scanning strategy of DLD pro-
cess. It was found that sample, obtained using lengthwise strategy, has fine equiaxed
austenitic structure with average size of the dendritic cells 1.2±0.2 μm while the
microstructure of transversal sample consisted of fine columnar and fine equiaxed
austenitic cells with average size 1.7±0.3 μm in width and 20 μm in length. At the
crosswise sample average size of dendritic cells was 1.4±0.2 μm. Differences between
size of dendritic cells directly depends on cooling rate that approximately were 104-
105 K/s although all DLD process parameters were constant. The main reason was
different scanning strategy of laser beam that influence of inter-track idle time and, as
the result, on microstructure and mechanical properties. It was shown that as inter-track
idle time change from 4.37 to 0.75 s the ultimate tensile strength decrees from 729 to
686 MPa. Thus for obtaining high mechanical properties of DLD samples it is necessary
to choose scanning strategy along the largest dimension of the detail to increase inter-
track idle time.
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