Research Article

New Design PdNi Heterogeneous Nanocatalysts for the Direct Synthesis of Hydrogen Peroxide

Tan-Thanh Huynh¹*, Thi Tran Anh Tuan², Mawan Nugraha³

¹School of Applied Chemistry, Tra Vinh University Tra Vinh, 8700, Viet Nam.
²School of Basic Sciences, Tra Vinh University Tra Vinh, 8700, Viet Nam.
³Teknik Grafiaka, Politeknik Negeri Media Kreatif, Indonesia

Abstract.

Hydrogen peroxide (H₂O₂) is a widely used chemical as an eco-friendly oxidizing agent, with water being the only byproduct of oxidation in applications like bleaching pulp and paper, making electronic semiconductors, chemical and detergent synthesis, and wastewater treatment. The direct synthesis approach is preferred to provide the environmentally friendly production of H₂O₂ for market requirements. Bimetallic PdNi nanocatalysts were chosen for this study because of their catalytic activity and the structural characteristics of the material system. First, for the development of order-structured bimetallic PdNi nanocatalysts based on mesoporous carbon template after hydrogen-assisted heat treatment at 750°C. The transformation of the disordered structure into ordered intermetallically structured PdNi alloys with higher alloying extents was confirmed by X-ray absorption spectroscopy (XAS) and high-resolution transition electron microscopy (HR-TEM). Then, to improve the oxygen oxidation reaction, two-electron pathway selectivity was used by TiO₂-C as a support-ordered structure material to facilitate strong metal-support interactions. XAS and X-ray photoelectron spectra (XPS) techniques show more clear evidence of metal-support interactions with electron transfer from defects in the TiO₂-C support to the ordered alloyed PdNi nanocatalysts, resulting in record productivity and selectivity of H₂O₂ production at ambient conditions. The results demonstrated in this study will enlighten a reliable design of new heterogeneous nanocatalysts with ordered structure. Electron transfer between hybrid support and active sites can clarify the catalytic behavior and prompt further research during the direct synthesis of hydrogen peroxide.

Keywords: hydrogen peroxide, direct synthesis, heterogeneous nanocatalysts PdNi, TiO₂-C
1. INTRODUCTION

Hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) is an inorganic oxidant agent. H\textsubscript{2}O\textsubscript{2} is a kind of colorless liquid, which is more viscous than water. It is easy to decompose by exposure to daylight and soluble in water, alcohol due to intermolecular hydrogen bonding. H\textsubscript{2}O\textsubscript{2} was first discovered by Louis Jacques Thénard in 1818 as the product by hydrolysis of barium oxide and sulfuric acid solution. Up to now, it has become one of the most-100 important chemical in the world [1]. Currently, more than 95% of the world's H\textsubscript{2}O\textsubscript{2} is produced by anthraquinone oxidation (AO) as depicted in the flow chart below:

![Flow chart of the anthraquinone process for hydrogen peroxide manufacture.](image)

However, the anthraquinone process is not considered a green process as it requires significant energy input and generates waste; thus, it is not a suitable for the environmentally friendly synthesis of H\textsubscript{2}O\textsubscript{2}.

H\textsubscript{2}O\textsubscript{2} is a highly effective, green, and selective oxidant for many oxidation reactions. The oxidation process of hydrogen peroxide is an environment friendly oxidation that has many benefits since the oxidation product contains only water [2]. Challenges related to the direct synthesis of H\textsubscript{2}O\textsubscript{2} are generally related to catalyst selectivity. Pd is a popularly used catalyst for the direct synthesis of hydrogen peroxide, due to its high selectivity and yield, factors that are reflected in both computational and experimental studies [3-5].
Therefore, an ideal catalytic performance should achieve both enhanced selectivity and reduced H$_2$O$_2$ degradation. The synthesis the hybrid support TiO$_2$-C to the ordered alloy PdNi can clarify enhance productivity and selectivity up to 83.3 mole.kg$^{-1}$.h$^{-1}$ and 96.15%, respectively.

METHODOLOGY AND MATERIALS

1.1. Catalyst preparation

The ordered alloy PdNi nanocatalysts were precipitated on mesoporous silica (SBA-15) by the wet impregnation method to form a smooth gel that reported by T-T Huynh et al [6]. Then, titanium isopropoxide (Sigma-Aldrich) as TiO$_2$ source was added before the smooth dispersion gel was aged in flowing air, as illustrated in Fig. 2. The gel was was thermo-treated at 750 °C in Ar with a flow rate of 5 °C.min$^{-1}$ for 4 hours. The product was divided into two parts; one part was further calcined in 5%H$_2$/Ar at 750 °C for 4 hours. Finally, the both were dispersed in a NaOH 4M to remove the template. Then the resulting solid was filter by centrifuge.

![Figure 2: Scheme for the preparation of O-PdNi/TiO$_2$-C, and PdNi/TiO$_2$-C catalysts.](image)

1.2. Catalyst characterizations

Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the morphology of the hybrid supports i.e. TiO$_2$-C and the PdNi alloyed NPs. High-quality SEM images were obtained using field emission scanning electron microscopy (FESEM), JSM-7001F with an accelerating voltage of 30 kV, and Energy-dispersive X-ray spectroscopic (EDS) measurements were made for metal dispersion characterizations on the catalyst’s surface. The X-ray diffraction patterns of the PdNi alloy and O-PdNi...
alloy nanocatalysts were collected using a D2 phaser diffractometer \((2\theta \text{ range from } 15^\circ \text{ to } 85^\circ, \text{ scan rate } 0.1 \text{ deg. s}^{-1})\) to determine their structural and lattice parameters. Transmission electron microscopy (FEI Tecnai G² FE-TEM) with an accelerating voltage of 200 kV was used to verify the particle size and superlattice interplanar distances. X-ray photoelectron spectra (XPS) were taken to determine the binding energy shifts in the TiO\(_2\)-C of hybrid support. X-ray absorption spectra (XAS) were measured at room temperature with solid samples. Pd foil, Ni foil, TiO\(_2\) rutile, and TiO\(_2\) anatase were used as references for the Pd L-, and K-edge, Ni L-, and K-edge, and Ti L and K-edge. The XAS technique was used to determine alloyed extent.

1.2.1. Catalyst activity

This research was used a common method to determine hydrogen peroxide production by using permanganate titration in a solution. The other was prepared using deuterium oxide \([\text{D}_2\text{O}, (50 \text{ mL}), 99.9\%\text{D}, (\text{Sigma Aldrich})]\) to allow for \(^1\text{H}\) NMR measurements to calculating selectivity. All measurements were conducted by first purging the reactor with Ar, followed by feeding-in 5\% H\(_2\)/Ar and O\(_2\) (1:1) at room temperature.

2. RESULTS AND DISCUSSION

2.1. Catalyst characterizations

The catalysts’ structures and morphologies were confirmed by XRD and Scanning electron microscopy (SEM), as shown in Fig. 3. The XRD patterns of all samples have a significant shift diffraction peak (111) between Pd (05-0683) and Ni (04-0850), which originates in the crystal structure of the Pd and Ni alloy Fig. 3(a) - with O-PdNi/TiO\(_2\)-C and O-PdNi/C XRD, the patterns show the main diffraction peak (111) to be between 40° and 45°. In addition, O-PdNi/TiO\(_2\)-C has an overlapping peak at \(\sim 41^\circ\), which is attributed to the TiO\(_2\) crystal diffraction peak. The average crystallite size of PdNi nanocatalysts was calculated, from the diffraction line of the broadening peak (111), to be \(\sim 6 \text{ nm}\), using the Scherrer equation. The elemental composition was estimated by energy-dispersive spectroscopy (EDS). As shown in Figs. 3(c)-(d), the catalysts have similar morphologies on the surfaces of C and on the TiO\(_2\)-C hybrid support.

Fig. 4 shows high-resolution transition electron microscopy (HR-TEM) and high angle annular dark-field (HAADF) images of the best performing catalyst, i.e. O-PdNi/TiO\(_2\)-C. As can be seen, the alloyed PdNi catalyst's particle size was \(\sim 5 \text{ nm}\) in Fig. 4(a). Selective
Figure 3: (a) XRD patterns of PdNi/C, O-PdNi/C, PdNi/TiO$_2$-C, O-PdNi/TiO$_2$-C catalyst. (b) EDS spectrum of O-PdNi/TiO$_2$-C. (c), and (d) SEM images of O-PdNi/C, and O-PdNi/TiO$_2$-C, respectively.

area electron diffraction (SAED) was used to show the catalyst’s interplanar distances and the formation of the PdNi crystalline alloy. The Bragg diffraction fringes are diffused, due to PdNi crystal size being small (inset in Fig. 4(a)). The ordered phase of the PdNi alloy was identified as the superlattice structure using the Fast Fourier Transformation (FFT) filter function, see the rings of corresponding to (001) and (110) in the inset of Fig. 4(b). The lattice spacings of 2.17Å, 1.89Å, and 1.35Å, corresponding to the (111), (200), and (220) planes, are clearly seen in Fig. 4(c), which provide reliable evidence for ordered PdNi alloy formation after hydrogen treatment at high temperature. The above results, shows well-dispersed PdNi alloy nanoparticles with similar sizes on the hybrid support.

The surface composition and the chemical state of the elements in both the TiO$_2$-C support and in O-PdNi/TiO$_2$-C were studied by XPS. High-resolution C 1s, O 1s, and Ti 2p spectra were measured. As seen in Fig. 5(a), the XPS spectra of C-C bonds was recorded at 284.8 eV in both TiO$_2$-C and O-PdNi/TiO$_2$-C, this being due to their high carbon contents, while in addition adventitious carbon C-O binding was found by at 288 eV. These results are in good agreement with the EDS composition analysis and the HR-TEM distribution mentioned in the above discussion. The presence of C-O binding was also confirmed by O 1s spectra, see Fig. 5(b). The main peak of O 1s should be
The employed XAS to evaluate the electronic structures and valance states of various elements. Fig. 5(a) shows the X-ray absorption near edge structure (XANES) spectra of Ti K-edge of all the catalysts. Fig. 5(a1) shows the Ti pre-edge region of TiO$_2$-C in comparison with TiO$_2$ anatase, TiO$_2$ rutile, and PdNi/TiO$_2$-C, O-PdNi/TiO$_2$-C. The pre-edge peaks of the TiO$_2$ anatase and rutile phases were determined by the transition from the 1s to 3d molecular orbitals [11]. The pre-edge position shifted to a higher energy, while the prominent peak in TiO$_2$-C, without catalyst loading, indicated increased Ti coordination numbers, which agrees well with the XPS results. The intensity of the Ti pre-edge peak with catalyst loading was shown to be higher than without catalyst loading, due to the ‘coordination chemistry’ that exists with catalyst loading. The XANES spectrum of the TiO$_2$-C and catalysts in Fig. 5(a2) shows the edge-jump region. The
adsorption peak at \(\sim 4985 \text{ eV} \) represents the electronic transition occurring in two the phases of TiO\(_2\), and is included here as a reference. However, the adsorption peak of TiO\(_2\)-C in three samples shifted to a higher energy around 4990 eV, due to the changing coordination environment of the Ti metal and different interaction intensity resulting form interactions with alloyed PdNi \[12\]. As a result, Ti XANES of TiO\(_2\)-C shows that Ti is less positively charged than Ti XANES in O-PdNi/TiO\(_2\)-C, and PdNi/TiO\(_2\)-C. This value is due to the influence of the electron transfer between the hybrid support and the catalyst. The result also indicates that the bonding between Ti-O-C in the support is in accord with the XPS analysis. The EXAFS spectra clearly show the formation of Ti-O bonding at 1.7Å \[13\] and Ti-metal bonding at approximately 2.4 to 2.8Å in Fig. 5(b): note that the intensity found for catalytic TiO\(_2\) is lower than that of all the references. This suggests a coordination number change around Ti with catalyst loading. Interestingly, the peak appearing at 1.1Å may be due to C-O bonding, see Fig. 5(b) \[14\].

![Figure 5: XANES spectra of Ti K-edge, (b) EXAFS spectra of TiO\(_2\)-C, PdNi/TiO\(_2\)-C and O-PdNi/TiO\(_2\)-C. a1) enlarged pre-edge features of Ti K-edge XANES spectra and a2) enlarged edge jump features of Ti K-edge XANES spectra.](image-url)

To identify the synergistic effect existing between TiO\(_2\)-C and the PdNi alloy during H\(_2\)O\(_2\) production, the Ti L\(_\text{3,2}\), Pd L\(_\text{3}\), and Ni L\(_\text{3}\) edges were observed, see Fig. 6. The XANES white line Ti L\(_{3,2}\)-edge was observed to identify the electronic structure on the surface of hybrid support TiO\(_2\)-C in Fig. 6(a). The lower intensity of the Ti L\(_{3,2}\)-edge after catalyst
loading was due to strong coulombic interaction between the metal and Ti 3d empty states. As can be seen, the white line intensity of TiO$_2$-C (blue curve) is higher than that of TiO$_2$-C with the catalyst loading (red and black curve in Fig. 6(a)). This value confirmed that the TiO$_2$-C support had withdrawn electron density from the PdNi alloy, which can be regarded as a strong metal-support interaction (SMSI) [15, 16] between PdNi NPs and the TiO$_2$-C hybrid support. For low loadings of Pd and Ni metal, we used a silicon drift detector (SDD) to measure electron transfer in the catalyst. The white line intensities of the Pd L-edge and Ni L-edge in O-PdNi/TiO$_2$-C were higher than in PdNi/TiO$_2$-C, as shown in Fig. 6(b-c). It can be seen that the XANES white line of the Pd metal state peak appears at 3174 eV [17]. The white line intensity was determined by the degree of electronic transfer between the ordered structure of O-PdNi and the disordered PdNi catalyst to the hybrid support. The significantly higher intensity of Pd in the O-PdNi catalyst suggested stronger electronic transfer than in PdNi catalyst. Interestingly, Ni atom’s oxidation state in the catalyst was shown to be in the region at 852 eV and 854 eV [18]. Similarly, the white line intensity of Ni in O-PdNi is significantly higher than that in PdNi. The intensity changes not only confirm the presence of SMSI but also indicates electronic transfer between the catalyst and the support. This result is important with respect to achieving high selectivity for the oxygen reduction reaction two-electron pathway [19]. Therefore, we can say that the synergistic TiO$_2$-C hybrid support has an important role in the PdNi bimetallic catalyst towards H$_2$O$_2$ production, which is obviously not possible in a simple carbon support.

The synergistic effects of ordered structure catalysts towards the selectivity and production of H$_2$O$_2$ was examined using the XANES spectra of Pd and the Ni K-edge [6]. The XAS of Pd and Ni, see Fig. 7, show that Heterometallic bonding can enhance catalytic activity: Figs. 7(a)-(b) show the XANES spectra of Pd and the Ni K-edge, respectively. The position peak of Pd and the Ni K-edge are seen to show similar trends to the trends of Pd and Ni foil when used as comparative references. This indicates the presence of the metallic state of Pd and Ni in all the catalysts. Moreover, the white line peak was also observed with the Pd-Ni oxidation state in the catalysts, as shown by peaks shifts in the ordered structures [20], see the insets in Figs. 7(a)-(b). A comparison of the electronic interactions between Pd and Ni in ordered and disordered catalyst structures was undertaken by comparing the white line intensities. It was found the electronic effects in ordered structures were stronger than in disordered structures, due to the greater extent of alloying. EXAFS were studied to obtain the bond lengths and coordination numbers of bimetallic catalysts, see Figs. 7(c)-(d) of the Pd and Ni K-edges, respectively. In this case, the longest bond length is Pd-Pd (2.5 Å) in Pd foil, and the
shortest bond length Ni-Ni (2.2 Å) is in Ni foil. From the EXAFS of Pd, the bond lengths of Pd-Ni and Pd-Pd were found to be 2.2 Å and 2.4 Å, respectively, as shown in Fig. 7(c). The intensity in ordered structures, being higher than that in disordered alloys, indicates that the Ni atom offers a significant coordination contribution with Pd. In contrast, the EXAFS of Ni with a peak around 2.2 Å in Fig. 7(d) shows the Ni-Pd bonding contribution and the lower intensity in an ordered structure having high coordination with Pd.

The heterometallic bonding in ordered alloys and hybrid supports significantly enhanced the activity (83.3 mole.kg$^{-1}$.h$^{-1}$) and selectivity (96%) for the direct synthesis of hydrogen peroxide, especially with a reduced total metal loading (1.27 wt%). Our work is strongly conceptual and offers the first design of a new, highly selective, catalyst for the direct synthesis hydrogen peroxide.

3. CONCLUSION AND RECOMENDATION

On hybrid TiO$_2$-C supports, we have effectively created structurally ordered PdNi catalysts that exhibit distinct synergistic effects when applied to the direct generation of hydrogen peroxide. An efficient method for creating nanocatalysts for the direct
The manufacture of hydrogen peroxide has been found to be the use of earth-abundant Ni to create the PdNi nanocatalyst and the transformation of the nanoalloys into ordered structures. Stronger electronic interactions in catalysts with ordered structures lead to the high activity toward H_2O_2 production, whereas the hybrid TiO$_2$-C support is responsible for the increased selectivity. The activity and selectivity of O-PdNi/TiO$_2$-C are higher than those reported for Pd-based alloy catalysts in the literature. For the direct production of hydrogen peroxide, the heterometallic bonding in ordered alloys and hybrid supports dramatically increased activity (83.3 mole kg$^{-1}$ h$^{-1}$) and selectivity (96%).

References

