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Abstract
We consider certain approximation for determining the equation of motion for nerve
signals by using the model of the lipid melting of membranes. The nerve pulses are
found to display nonlinearity and dispersion during the melting transition. In this
simplified model the nonlinear equation early proposed by Heimburg and coworkers
transformed to the well known integrable Boussinesq non linear equation. Under
specific values of the parametric space this system shows the existence of singular
and regular soliton like structures. After their collisions the mutual creation and
annihilation (each other) of nerve signals along the nerve, during their propagation,
has been observed.
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Resumen

Nosotros hemos analizado una aproximación analítica para determinar la ecuación
del movimiento de pulsos nerviosos usando el modelo del disolución del lípido en
membranas. Los pulsos nerviosos muestran no linealidad y dispersión durante su tran-
sición fundente. En este modelo simplificado la ecuación inicial no lineal propuesta por
Heimburg y colaboradores se transformó en la conocida ecuación no lineal integrable
de Boussinesq. Bajo valores específicos de los parámetros del espacio este Sistema
muestra la existencia de estructuras solitónicas singulares y regulares. Después de sus
colisiones durante su propagación, fueron observados la creación y el aniquilamiento
mutuo (de uno con el otro) de los pulsos a lo largo del nervio.
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1. INTRODUCTION

One of key fundamental problems in biophysics is to understand how nature makes
to carry information from one point to the other. It’s more, the information with-
out significant distortion will travel along distances between two considerable long
separated centers. Regarding the neural transmission, Hodgkin and Huxley (HH) in
1952 proposed a model for nerve pulses based on ion gradients through the nerve
membrane conducted by special ion channels [1]. Subsequently, Fitz Hugh proposed
a simplified neuronal version of Hodgkin and Huxley model. Nagumo suggested as
analogous neuronal, a nonlinear electrical circuit, controlled by an equation system
also similar to those of Van Der Pol currents and also from the point of view of dynamic
systems [2].

However, in varios lines of investigation concerning nerve pulse propagation it is
shown

that the action potential can pass though each other. The experiments do not show
this ever, but in contrary, the collision and annihilation of nerve pulses are observed
in real experiments. Including there is a standard ”collision test” for identification of
neurons in brain neurophysiology [3] in synthesis when nerve impulses collide they
could annihilate leaving as residue other types of nonlinear patterns. In this line of
research we propose a simple modification of Heimburg model in which the solitary
wave structures behave in a manner of macroscopical particles and they could anni-
hilate, or conserve their initial configuration after collisions. This reduced model is a
variant of the Boussinesq nonlinear equation that support regular and singular solitary
traveling wave solutions and could represent at least an attempt to solve this crucial
problem.

We use the model of Heimburg and coworkers [4] and by applying the trivial bound-
ary condition we found some non-classic soliton like solutions i.e singular solutions
additionally to the well regular traveling solitons. Thus, in the next section we briefly
expose the main features of the nonlinear evolution equation for nerve pulses. In the
III section we show that regular and singular soliton solutions with the boundary trivial
condition could appear and discuss some properties of their interactions for one, two
and three soliton solutions. Finally, conclusions are drawn in section IV.

DOI 10.18502/keg.v3i1.1419 Page 121



 

ESTEC Conference Proceedings

2. NONLINEAR EQUATION OF MOTION FOR NERVE PULSES

The theory is based on hydrodynamic properties of a density pulse in the presence
of dispersion. The equation of motion proposed by Heimburg and coauthors started
with the classic sound propagation equation in the absence of dispersion along the
quasi-unidimensional axon:

𝜕2𝑈
𝜕𝑡2 = 𝜕

𝜕𝑥 (𝑐
2 𝜕𝑈
𝜕𝑥 ) − ℎ𝜕

4𝑈
𝜕𝑥4 (1)

being 𝑈 = 𝜌𝐴 − 𝜌𝐴0 the change of density in the membrane, 𝜌𝐴0 is the density of the
membrane at physiological condition slightly above of melting transition and 𝑐2 = 𝑐20 −
𝑝𝑈+ 𝑞𝑈 2, with 𝑐0 the sound velocity. The value is the dispersion parameter which sets
the scale of the system in order to produce pulses of a few centimeters width.

Thus, we will assume small changes of the lateral density 𝑈 of the membrane. In
such a case, wewill have a low amplitude soliton but with enough energy to overcome
the required threshold and evoke the action potential in the membrane. Thus, in the
approximation of small changes in the lateral density U equation (1) become

𝜕2𝑈
𝜕𝑡2 − 𝑐20

𝜕2𝑈
𝜕𝑥2 + 𝑝

2
𝜕2 (𝑈)2
𝜕𝑥2 + ℎ𝜕

4𝑈
𝜕𝑥4 = 0, (2)

The expression (2) is the well known Boussinesq equation.

3. REGULAR AND SINGULAR NERVE SOLITON PULSES

For the sake of simplicity, let us introduce the following changes of variable

𝑈 = 𝑐30𝑢, 𝑧 = 𝑐0
√ℎ

𝑥, 𝜏 =
𝑐20
√ℎ

𝑡 (3)

The equation (2) then becomes

𝑢𝜏𝜏 − 𝑢𝑧𝑧 + 𝜆(𝑢2)𝑧𝑧 + 𝑢𝑧𝑧𝑧𝑧 = 0 (4)

with 𝜆 = 𝑝√ℎ/2without lost of generality we can put 𝜆 = 6 and the notation 𝑢𝑧 = 𝜕𝑢/𝜕𝑧
was used.

One of the general method for finding soliton solutions of eq. (4) were developed
by Hirota [5], for which the unknown function is represented as

𝑢 (𝑧, 𝜏) = 𝜕2
𝜕𝑧2 𝑙𝑛𝑓 (𝑧, 𝜏) (5)
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Figura 1: Profiles of one soliton solution with 𝛼 = 1.2 for different velocity values. The highest pulse is
slower then other soliton pulses.

3.1. One regular and singular soliton signal

Let us now obtain the one soliton and holon solutions for the nerve signal. For this
case, the unknown function 𝑓 (𝑧, 𝜏) is taken as

𝑓 (𝑧, 𝜏) = 1 + 𝛼𝑒𝜃(𝑧, 𝜏), 𝑤𝑖𝑡ℎ 𝜃 (𝑧, 𝜏) = 𝑟𝑧 + 𝜔𝜏 𝑎𝑛𝑑 𝛼 = 𝑐𝑡𝑒. (6)

If 𝛼 > 0 then the regular nerve pulse is represented by the well known bell soliton

𝑢 = 𝑝2
4 𝑆𝑒𝑐ℎ2 (

𝑝
2 (𝑧 + 𝜀𝑣𝜏) + 𝑙𝑛𝛼) . (7)

While, if 𝛼 < 0, the singular or holon type of solution is observed

𝑢 = −𝑝
2

4 𝐶𝑠𝑐ℎ2 (
𝑝
2 (𝑧 + 𝜀𝑣𝜏) + 𝑙𝑛 |𝛼|) (8)

with 𝜀 = ±1, 𝑣2 = 1− 𝑝2, the values of 𝛼, 𝑧 and 𝜏 can be reparametrized in such a way
that we could produce the desirable coefficient values in the Boussinesq equation (2).

The Figure (1) shows the soliton profiles obtained from expression (7) for the one
soliton solution (1SS) for an artificial biomembrane of DPPC. In addition, in this figure
we observe that, as the soliton amplitude decreases, its width increases.

3.2. Two and three soliton solutions and their interactions

When analyze two soliton solutions. The unknown function 𝑓 (𝑧, 𝜏) in the equation (6)
has the form

𝑓 (𝑧, 𝜏) = 1 + 𝜑1 + 𝜑2 + 𝐴𝜑1𝜑2 (9)
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Where

𝜑𝑖 = 𝑒𝑧𝑖 , 𝑧𝑖 = 𝑟𝑖𝑧 + 𝜀𝑖𝜔𝑖𝜏 + 𝑧𝑖 𝑖 = 1, 2

Here the parameters 𝑟𝑖, 𝜔𝑖, 𝑧𝑖 are constants and 𝜀𝑖 = ±1. Transforming the variables 𝑧𝑖
as 𝑧𝑖 = 𝑟𝑖 (𝑧 + 𝛼𝑖 + 𝜀𝑖𝑣𝑖𝜏), being 𝑣𝑖 = 𝜔𝑖/𝑟𝑖 the velocities of the wave packets, 𝛼𝑖 = 𝑧𝑖/𝑟𝑖,
y 𝑟𝑖 ≠ 0. By substituting these expressions in the eq. (9) for 𝑁 = 2 and taking in mind
analytical solutions, it is posible to determine the value of the parameter 𝐴

𝐴 = (𝜀1𝑣1 − 𝜀2𝑣2)2 − 3(𝑟1 − 𝑟2)2

(𝜀1𝑣1 − 𝜀2𝑣2)2 + 3(𝑟1 − 𝑟2)2
. (10)

The relationship between the velocities 𝑣𝑖 and parameters 𝑟𝑖 are:

𝑣2𝑖 = 1 − 𝑟2𝑖

Like for the previous one soliton solution, since amplitudes are dependent on veloci-
ties, the solutions of less amplitude are moving faster than the larger amplitude ones.
This property is very different from what happens with the common solitons of KdV
and others non linear systems, where the behavior is exactly inverse. The 2-soliton
solution has the following analytic form [6]

𝑢 = (4𝑟21𝑆𝑒𝑐ℎ2 (𝑧1/2) + 4𝑟22𝑆𝑒𝑐ℎ2 (𝑧2/2) + (𝐴 − 1) 𝑆𝑒𝑐ℎ2 (𝑧1/2) 𝑆𝑒𝑐ℎ2 (𝑧2/2) [𝐺 (𝑍, 𝜏)])
[4 + (𝐴 − 1) {1 + 𝑇𝑎𝑛ℎ (𝑧1/2)} {1 + 𝑇𝑎𝑛ℎ (𝑧2/2)}]2

with 𝐺 (𝑧, 𝜏) = [2𝑟1𝑟2 + 𝑟22 (1 + 𝑒𝑧1) + 𝑟21 (1 + 𝑒𝑧2)]
For the case 𝑁 > 2 the procedure is very similar for example for the 𝑁 = 3 the

generatrix function 𝑓 (𝑥, 𝜏) takes the form

𝑓 (𝑥, 𝜏) = 1 + 𝛿1𝑒𝜂1 + 𝛿2𝑒𝜂2 + 𝛿3𝑒𝜂3 + 𝑎12𝑒𝜂1+𝜂2 + 𝑎13𝑒𝜂1+𝜂3 + 𝑎23𝑒𝜂2+𝜂3 + 𝑎12𝑎13𝑎23𝑒𝜂1+𝜂2+𝜂3

with 𝛿𝑖 = ±1, for 𝑖 = 1, 2, 3 and 𝑎𝑖𝑗 are defined by Eq.(10).

The sign of the main parameter 𝐴 in the equation (10) determines the appearance
of the following asymptotic types of solutions after mutual pair collisions.

1. When 𝐴 > 0 the two types of solutions splits asymptotically when 𝜏 → ±∞ to the
one of the available solutions:

𝑢 ≈
𝑟2𝑖
4 𝑆𝑒𝑐ℎ

2 (𝑟𝑖 (𝑥 ± 𝑣𝑖𝑡)/2) and 𝑢𝐼𝐼 ≈
𝑟2𝑗
4 𝑆𝑒𝑐ℎ

2 (𝑙𝑛𝐴 + 𝑟𝑗 (𝑥 ± 𝑣𝑗𝑡)/2)

The parameter velocity region of existence of these regular solutions for definiteness
is

𝑣21 + 𝑣22 − 0.5𝜀1𝜀2𝑣1𝑣2 − 1.5√(1 − 𝑣21) (1 − 𝑣22) > 1.5
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Figura 2: Interaction of two regular solitons that after collision produce two hole soliton like structure
when A < 0. Both solitons are moving in opposite directions to each other.

Figura 3: Two soliton solution for which their amplitudes are not the same. Both pulses travel in opposite
direction when the parameter 𝐴 > 0.

2. If the coefficient 𝐴 < 0 additionally to the solutions presented above, could
emerge during the splitting after collisions the holon type of soliton similar to solution
(8).

3. When𝐴 = 0. In this casewe obtain positive singular solutionswithout any physical
sense.
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Figura 4: Three soliton like structures interacting and producing mutual annihilation and creation of
singular or regular solitons.

In figure (2) we observe the mutual transformation of holons to regular solitons and
viceversa. The figure (3) shows the normal interaction between solitons. The Figure
(4) shows us the interaction of three solitons.

4. RESULTS AND DISCUSSIONS

By introducing the slight modification to the nonlinear term, we found an important
characteristics of the obtained solutions: as the soliton amplitude decreases, its width
in- creases. For the case of nerve pulses, this is interpreted as follows: as the soliton
amplitude decreases, it possess a smaller energy associated and therefore a smaller
amount of phos- pholipids change the state but even in this case, for solitons with
velocities around 100𝑚/𝑠, the corresponding change in the membrane lateral density
is about 15.2%, which means that nearly the 62% of the membrane passes through the
phase transition, which is sufficient to overcome the threshold value for triggering an
action potential in the nerve. During the interactions of the explicit regular and singular
soliton solutions we can observe the following types of behaviors: normal interaction
that means the two solutions after interactions pass each other with small change in
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their phase; annihilation of solutions. We can say that the creation and annihilation of
soliton pulses is possible to take place and in some sense map the experimental facts.
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