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Abstract
Modeling of the electromagnetic field of the optical frequency in periodic structures
composed of parallel conducting nanorods aswell as composite spherical nanoparticles
with an excitonogenic envelope in hexagonal 2d-lattices - in the quasistatic
approximation and the FDTD method. The qualitative agreement of these approaches
is shown when calculating field characteristics in lattices of cylindrical elements.

1. INTRODUCTION

Deposition of ultrathin (island) layers of metal on the dielectric surface significantly
changes its properties, incl. and optical. Theoretically, this can be related to the
behavior of the electron gas of nanoparticles in external electric and magnetic fields.
Thus, in a homogeneous electromagnetic field of the optical frequency, plasmon
oscillations of the electron density are excited in the conducting nanoparticles, as
a result of which the near field near the surface of the particles changes [1-3]. It is
obvious that in a system with a large number of particles, it is necessary to take into
account their mutual influence on each other [4-5]. In the case of a regular spatial
arrangement of particles, this calculation is quite simple.

Nanolattices have a number of properties that make them promising for use as
elements of a new generation of miniature biosensors and compact optical radiation
control elements. Anomalous transmission [6], anomalous opacity (non-transparency)
[7], artificial optical and magneto-optical [8] activity, as well as the possibility of
plasmon focusing [9-13] are described in the literature. The development of compact
optoelectronic sensors is closely related to the need to obtain reproducible resonance
characteristics in the interesting part of the spectrum.
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In the first part of the paper, the field structure was studied in a quasistatic approx-
imation and the probabilities of induced transitions of molecules located in a regular
lattice of long parallel conducting rods of nanometer radius were calculated.

2. REGULARGRATINGS COMPOSED FROMLONGCONDUCTIVE
NANORODS (QUASISTATIC APPROXIMATION)

We orient the z axis of the Cartesian coordinate system along the axis of the lattice
nanorods, and choose the direction of the external electric field E0 along the x axis
perpendicular to z (Fig. 1), then the resulting field 𝐸(𝑟) will be the sum of the external
field𝐸0 and the field of polarized rods [17], and the distribution𝐸(𝑟) reduces to a picture
in the (x, y) plane.

We introduce the vector 𝑃2(𝜔)of the dipole moment of a unit length of a single
nanorod of radius R by the relation

𝑃2(𝜔) = 𝛼0(𝜔)𝐸0.

Here

𝛼0(𝜔) =
𝑅2

2
𝜀(𝜔) − 𝜀𝑚
𝜀(𝜔) + 𝜀𝑚

; 𝜀(𝜔) = 1 −
𝜔2
𝑝

𝜔(𝜔 + 𝑖𝛾) ; 𝜔𝑝 = √
4𝜋𝑒2𝑛𝑒
𝑚

– is polarizability of unit length of nanorod, the dielectric constant and the plasma
frequency of the metal, respectively.

Figure 1: To the calculation of the local field of a metal nanorod of radius R in a medium with dielectric
permittivity𝜀𝑚.

Potential of the summary near field outside the nanorod is given by expression

𝜙(𝑟) = −𝐸0𝑟 + 2𝑃2(𝜔)𝑟𝑟2 ,
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Figure 2: The near field structure of parallel nanorods and its relative amplitude |𝐸(𝑟)| /𝐸0.

and the field strength (Fig. 1) is given by expression

𝐸(𝑟) = −𝑔𝑟𝑎𝑑𝜙(𝑟) = 𝐸0 − ∇⃗(2
𝑃2(𝜔)𝑟
𝑟2 ) .

In the case of regular spatial arrangement of parallel nanorods in the form of one-
dimensional chain or two-dimensional grating, the effective dipole moment of unit
length of each rod can be represented as 𝑃2(𝜔) =

↔𝛼eff 𝐸0, where the effective polariz-
ability

↔𝛼eff= [
↔
𝐼 −𝛼0∑

𝑖
∑
𝑗

↔
𝐺 (𝑟𝑖𝑗)]

−1

𝛼0, (1)

and the dyadic quasistatic Green’s function
↔
𝐺 (𝑟), is a tensor of the second rank

↔
𝐺 (𝑟) = 1

𝑟2 [2
𝑟 ⊗ 𝑟
𝑟2 −

↔
𝐼] , (2)

𝑟𝑖𝑗 = 𝑟 + 𝑖𝑒1 + 𝑗𝑒2 is the radius vector of rod with indices i and j, e1 and e2 are the
elementary vectors of two-dimensional periodic nanorods lattice.

The field potential in such lattice is given by

𝜙(𝑟) = −𝐸0𝑟 + 2∑
𝑖
∑
𝑗
𝑃2(𝜔)𝑟𝑖𝑗

1
𝑟2𝑖𝑗
. (3)

It can be seen from (1) and (2) that more distant conductors contribute less to both
the effective polarizability of each rod and the total field potential at a given point.
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Therefore, in practical calculations it is sufficient to take into account the influence of
several nearest conductors.

For quasi-one-dimensional chain of parallel rods, one of the elementary vectors
becomes infinite and summation over the corresponding index is not carried out.
Numerical calculations show that the characteristics of the field of parallel chain of
nanorods depend on the orientation of the vector E0. Therefore, the local distortions
of the field have the largest amplitude with orientation E0 across the axis of chain
(Fig.2).

In quasi-two-dimensional geometry, calculations were performed for gratings with
square |𝑒1| = |𝑒2| , ∠(𝑒1𝑒2) = 𝜋/2 and hexagonal |𝑒1| = |𝑒2| , ∠(𝑒1𝑒2) = 𝜋/3 packing of
rods (Fig. 3).

Because of the known symmetry of these gratings, the resulting field in them
depends periodically on vector E0 orientation. For the case of rectangular package, this
dependence is repeated through an angle 𝜋/4, and for hexagonal packing – through
𝜋/6. The maximum local distortions of the field occur when vector E0 is oriented along
vectors e1 and e2 of structure.

Figure 3: Field structure 𝐸(𝑟) and its relative amplitude |𝐸(𝑟)| /𝐸0 in the quasi-two-dimensional matrix of
infinite nanorods for their square (a) and hexagonal (b) packing.

Simulation also shows that as the size of the system increases, the amplitude val-
ues of the local field distortion decrease, and the spatial dimensions of such regions
increase. In this case, along the direction of the vector E0, co-directed with the lattice
vector e1, the energy density of the field is concentrated near the nanorods, and in the
transverse direction the maximum of the field is located between them.

It is shown that in calculating the probability of induced transitions for a molecule
in nanorods lattice, it is necessary to take into account the orientation of its transition
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Figure 4: Field intensity in square gratings of nanorods along the lines passing through them and co-
directed with vectors e1 (1) and e2 (2) of lattice pешетки.

Figure 5: Logarithm of relative transition probability in square lattice from nanorods (𝑝𝐷𝐸(𝑟))
2 / (𝑝0𝐸0)

2

under the collinear orientation of 𝑝𝐷 ↑↑ 𝐸0 vectors.

dipole moment 𝑝𝐷, both with respect to the orientation of the external field E0 and
relative to the principal axes of the quasi-two-dimensional structure. The case of a
coincident orientation of the vectors 𝑝𝐷 ↑↑ 𝐸0 is indicative (Fig. 5), since their transition
probability decreases with their angular misalignment.
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3. POLARIZATION PROPERTIES OF NANOLATTICES
COMPOSED FROM SPHERICAL LAYER COMPOSITES WITH
EXCITONOGENEOUS SHELL ANDMAGNETIZEDMETAL CORE

3.1. Polarizability of a particle in a planar lattice in
the approximation of the first two coordination spheres

Let us now consider the aggregate of nanoparticles forming an infinite planar lattice
of hexagonal symmetry. We will calculate the interaction of polarized nanoparticles
in the approximation of the first two coordination spheres, as shown in Figure 6. The
effect of particles in other coordination spheres is not taken into account, because their
contribution to the polarizability of the particle in question will be negligibly small.

Since such a system is symmetric, the induced polarizability will be the same on all
particles of the infinite lattice. Then taking into account the six nearest neighbors of the
first coordination sphere and the twelve dipoles of the second coordination sphere in
the lattice gives the following expression for the dipole moment vector of the isolated
nanoparticle

𝑃2(𝜔) = 𝛼0 [𝐸0+
↔
𝐺1 (𝑎)𝑃2(𝜔)+

↔
𝐺2 (𝑎)𝑃2(𝜔) + ⋯+

↔
𝐺6 (𝑎)𝑃2(𝜔)]+

+𝛼0 [
↔
𝐺7 (2𝑎)𝑃2(𝜔)+

↔
𝐺9 (2𝑎)𝑃2(𝜔) + ⋯+

↔
𝐺1 7(2𝑎)𝑃2(𝜔)]+

+𝛼0 [
↔
𝐺8 (2ℎ)𝑃2(𝜔)+

↔
𝐺1 0(2ℎ)𝑃2(𝜔) + ⋯+

↔
𝐺1 8(2ℎ)𝑃2(𝜔)]+

(4)

Here 𝛼0 is the polarizability of a single nanoparticle; ℎ = 𝑎√3/2, 𝑎 - distance between
neighboring particles;

↔
𝐺 (𝑟)- the three-dimensional Green’s tensor, in contrast to (2)

defined by the relation

↔
𝐺𝑗 (𝑟) =

1
𝑟3 (3𝑛 ⊗ 𝑛−

↔
𝐼) (5)

Otherwise, by regrouping the terms in (4), we obtain

[
𝐼 − 𝛼0(

6

∑
𝑗=1

↔
𝐺𝑗 (𝑎) +

8

∑
𝑗=3

↔
𝐺2𝑗+1 (2𝑎) +

9

∑
𝑗=4

↔
𝐺2𝑗 (2ℎ))]

𝑃2(𝜔) = 𝛼0𝐸0. (6)

Then the effective polarizability tensor of a spherical nanocomposite in a lattice in
the approximation of the two first coordination spheres can be written in the form

↔𝛼eff (𝜔) = [
𝐼 − 𝛼0(𝜔)(

6

∑
𝑗=1

↔
𝐺𝑗 (𝑎) +

8

∑
𝑗=3

↔
𝐺2𝑗+1 (2𝑎) +

9

∑
𝑗=4

↔
𝐺2𝑗 (2ℎ))]

−1

𝛼0(𝜔). (7)
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Figure 6: The first two coordination spheres of a planar lattice of layered spherical nanocomposites. To
the calculation of a) transverse, b) longitudinal polarizability.

For the dipole polarizability tensor
↔𝛼0 of a spherical layered composite with an

anisotropic core, owing to the superposition of an external magnetic field of induction
B, the following expression was obtained previously [3]

↔
𝐴 (

↔𝜀1 (𝜔 ∣ 𝐵), 𝜀2, 𝜀3)

= [(
↔𝜀1 (𝜔 ∣ 𝐵) + 2𝜀2)(𝜀2 − 𝜀3) + (

↔𝜀1 (𝜔 ∣ 𝐵) − 𝜀2)(2𝜀2 + 𝜀3)𝜉3]×

×[(
↔𝜀1 (𝜔 ∣ 𝐵) + 2𝜀2)(𝜀2 + 2𝜀3) + 2(

↔𝜀1 (𝜔 ∣ 𝐵) − 𝜀2)(𝜀2 − 𝜀3)𝜉3]
−1
𝑅3
2,

(8)

Here 𝜉 = 𝑅1/𝑅2 is the ratio of the core radius to the outer radius of the spherical
composite. 𝜀(𝜔), 𝜀2(𝜔), 𝜀3 - dielectric permittivities of the metal core, excitonogenic
shell and external environment, respectively. When the magnetic field is turned off, all
tensor quantities appearing in (8) are reduced to their scalar prototypes and expression
(8) is transformed to the known expression [2, 17] for the polarizability of an isotropic
composite.

The components of the tensor 𝛼1,1eff(𝜔) = 𝛼2,2eff(𝜔) will correspond to the transverse
polarizability, as shown in Fig. 6a, and the component 𝛼3,3eff(𝜔)- longitudinal polarizability,
as shown in Fig. 6b.

Below, in Figures 7 and 8, the spectra of imaginary and real parts of the polariz-
abilities of a separate layered nanoparticle and a layered nanoparticle that forms part
of a planar lattice are presented. It is seen from the graphs that for the transverse
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polarizability of the nanoparticle in the lattice, the resonances will shift to the low-
frequency region, and for the longitudinal polarization to the high-frequency region of
the spectrum relative to the polarizability resonances of the isolated nanocomposite.
In this case, the amplitudes of the exciton resonances of the transverse polarizability
𝛼1,1eff(𝜔) will be larger, and the amplitudes of the exciton resonances of the longitudinal
polarizability 𝛼3,3eff(𝜔) are smaller. The amplitudes of plasmon resonances are practically
the same for all three types of polarizabilities under consideration.

Figure 7: Comparison of the exciton bands of the imaginary parts of the polarizability of a separate layered
spherical nanoparticle, the transverse Im𝛼1,1eff(𝜔) and Im 𝛼3,3eff(𝜔) longitudinal polarizabilities of a layered
nanoparticle in a planar lattice a) low-frequency and b) high-frequency exciton resonances. 𝑅1 = 60 nm,
𝑅2 = 80 nm, 𝛾 = 6 ⋅ 1012𝑐−1, 𝑎 = 180 nm, Γ = 3 ⋅ 1012𝑐−1, 𝜔𝑒𝑥𝑐 = 4 ⋅ 1015𝑐−1.

In a magnetic field, the amplitudes of all three resonances of the polarizability of a
layered nanoparticle in a planar lattice decrease, and plasmon resonance, in addition,
splits into two spectral components that expand with increasing magnetic induction B,
just as in the case of a separate nanocomposite, as demonstrated in Fig. 9 and 10.

Thus, for a layered nanoparticle with an excitonogenic shell and ametal core located
in a planar lattice of the same particles, the exciton and plasmon resonances are
displaced, and the effect of the external magnetic field is analogous to the case of
a solitary layered nanoparticle.

3.2. Comparison of the dipole polarizabilities of a separate layered
nanocomposite with its lattice analog

Next, we compare the polarizability spectra of a separate layered nanocomposite 𝛼0(𝜔)
and layered composites that form part of a flat and three-dimensional 𝛼3−𝑑(𝜔) lattice.
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Figure 8: Comparison of the spectra of the polarizability 𝛼0 of a separate layered spherical nanoparticle,
the transverse 𝛼1,1eff and longitudinal 𝛼3,3eff polarizabilities of a nanoparticle in a planar lattice of layered
nanocomposites a), b) exciton resonances (Re parts), c), d) plasmon resonances (Re and Im parts).

Figure 9: Spectra of the imaginary part of the transverse polarizability of a layered nanoparticle in a planar
lattice of layered nanocomposites as a function of the magnitude of the magnetic induction B. a) exciton
resonance, b) exciton and plasmon resonances. 𝑅1 = 60 nm, 𝑅2 = 80 nm, 𝛾 = 6 ⋅ 1011𝑐−1, 𝑎 = 180 nm,
Γ = 3 ⋅ 1011𝑐−1, 𝜔𝑒𝑥𝑐 = 4 ⋅ 1015𝑐−1.

As can be seen from Figures 11 and 12, resonances of the transverse polarizability
𝛼1,12−𝑑(𝜔) of a layered nanocomposite in a planar lattice are shifted to a low-frequency

DOI 10.18502/ken.v3i3.2028 Page 181



 

KnE Energy & Physics PhIO-2018

Figure 10: Spectra of the real part of the transverse polarizability 𝑅𝑒𝛼1,1eff of a layered nanocomposite of a
particle in a planar lattice of identical elements, depending on the magnitude of the magnetic induction
B. a) low-frequency exciton resonance, b) high-frequency exciton resonance and the plasmon resonance
split in a magnetic field.

region, increasing in amplitude, and resonances of the transverse polarizability of a
nanocomposite in a bulk lattice to the high-frequency region of the spectrum, decreas-
ing in amplitude. However, it can be seen that the displacement of resonances of the
polarizability of a nanoparticle in a planar lattice will be more pronounced. Obviously,
this is due to the symmetry and dimensionality of the flat and volume lattices.

For resonances of the longitudinal polarizability of particles in a plane 𝛼3,32−𝑑(𝜔) and
volume 𝛼3,33−𝑑(𝜔) lattice, the opposite effect is observed, as shown in Figures 13 and
14. Resonances of the longitudinal polarizability 𝛼3,32−𝑑(𝜔) of a layered nanoparticle in
a plane lattice decrease in amplitude and shift to a low-frequency region, and reso-
nances of the longitudinal polarizability 𝛼3,33−𝑑(𝜔) of the nanoparticle in the bulk lattice
increase in amplitude and are shifted to the low-frequency region of the spectrum.
But the displacement of resonances of the polarizability of a layered nanoparticle in a
planar lattice is still as large as the displacement of resonances of the polarizability of
a layered nanoparticle in a bulk lattice.

Thus, a comparison of the polarizability spectra of a separate layered nanocomposite
and nanocomposites included in a planar and bulk lattice shows that the symmetry
and dimension of such lattices cause a displacement of the resonances, which is more
pronounced in the case of a planar lattice.
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Figure 11: Comparison of the spectra of imaginary parts of the polarizability of a separate layered spherical
nanoparticle Im 𝛼0 and transverse polarizabilities for layered nanoparticles in a plane Im𝛼1,12−𝑑 and bulk
Im𝛼1,13−𝑑 lattice. Low-frequency (a), and high-frequency (b) exciton resonances. 𝑅1 = 60 nm, 𝑅2 = 80 nm,
B= 0T, 𝛾 = 6 ⋅ 1012𝑐−1, 𝑎 = 180 nm, Γ = 3 ⋅ 1012𝑐−1, 𝜔𝑝 = 13, 87 ⋅ 1015𝑐−1, 𝜔𝑒𝑥𝑐 = 4 ⋅ 1015𝑐−1.

Figure 12: Comparison of the polarizability spectra of a separate layered spherical nanoparticle 𝛼0 and
transverse polarizabilities for layered nanoparticles in a plane 𝛼1,12−𝑑 and bulk 𝛼1,13−𝑑 lattice a), b) exciton
resonances (Re parts); c), d) plasmon resonances (Re and Im parts).
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Figure 13: Comparison of the spectra of imaginary parts of the polarizability of a separate layered spherical
nanoparticle Im𝛼0 and longitudinal polarizabilities for layered nanoparticles in a plane Im 𝛼3,32−𝑑 and bulk
Im 𝛼3,33−𝑑 lattice. a) low-frequency, b) high-frequency exciton resonances.

Figure 14: Comparison of the spectra of real parts of the polarizability of a separate layered spherical
nanoparticle 𝛼0 and longitudinal polarizabilities for layered nanoparticles in a plane 𝛼3,32−𝑑 and bulk 𝛼3,33−𝑑
lattice a) low-frequency and b) high-frequency exciton resonances (Re parts); c) Re and d) Im parts of
polarizabilities - plasmon resonances
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4. FDTD MODELING OF ELECTROMAGNETIC FIELD IN
THE SQUARE LATTICE FROM NANOCYLINDERS

An alternative way to calculate the electromagnetic field can be a direct numerical
solution of Maxwell’s equations by the FDTD method [14]. One of the advantages of
this method is the automatic accounting of the delay effect.

In this section, the spatial distribution of the electromagnetic field in periodic nanos-
tructures composed of metal nanorods with activated plasmon modes was calculated
by the FDTD method. Simulation was performed using the MEEP software package
[14].

Figure 15: FDTD calculation scheme. The dashed lines show the cross sections in which the structure of
the field is investigated.

For a numerical experiment, a two-dimensional countable domain was constructed.
In this domain was a fragment of a square grating of nanorods. The scheme of the
numerical experiment is shown in Figure 15. The axes of the nanorods were per-
pendicular to the counting domain. The radius of the nanocylinder was r = 25 nm,
and its length is equal to infinity. The distance between the axes of two adjacent
nanocylinders in the X direction was 3r, in the Y direction was 4r.

In the simulation, two types of nanocylinders were considered: from silver (Ag) and
from silicon dioxide (SiO2). The optical properties of the materials used in modeling
were set by means of the dielectric permittivity𝜀1 (𝜔). In this case, for silver, this func-
tion will be a frequency-dependent function (frequency dispersion), and for silicon
dioxide a constant. It should be noted that in the FDTD method it is impossible to use
the frequency-dependent permittivity in the form of a numbers table. Therefore, the
dielectric properties of silver were approximated by the Drude-Lorentz model using
experimental data [15, 16].
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Calculations were made for two different external media with dielectric permittivity
𝜀2: vacuum (𝜀2 = 1) and water (𝜀2 = 1.77).
A planar linearly polarized monochromatic wave with a wavelength λ = 390 nm

(maximum of plasmon resonance in a silver nanocylinder in vacuum) was modeled
as the initiating field. The plane of polarization of the electromagnetic wave coincides
with the plane of the countable region (Fig. 15).

Figure 16 shows two-dimensional maps of the electric field average intensity spatial
distribution in the interaction of an electromagnetic wave with nanocylinders in a
square grating.

Figure 16: Time-averaged distribution of the intensity of the electric field in a rectangular grating of
nanocylinders in a vacuum: a) Ag, b) SiO2.

It can be seen from Fig. 16a that the field structure in a medium with metallic
nanorods is highly inhomogeneous. We see a lot of ”hot spots”, where the field is
locally amplified.

On the other hand, in Figure 16b for comparison, the distribution of the field is
presented in the case when the grating is composed of nanocylinders without plasmon
properties (SiO2). It is seen that in this case the field is homogeneous.

Thus, it can be stated that the strong inhomogeneity of the field in the case of a
metal grating is a manifestation of the plasmon properties of its constituent elements.

For a more detailed analysis of the field structure, we considered the average elec-
tric field intensity in two sections: along the vector E0 (blue dotted line in Fig. 15) and
perpendicular to the vector E0 (red dotted line in Fig. 15).
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Figure 17 shows the dependence of the electric field intensity in a rectangular grating
of nanocylinders in the cross section along the vector E0. It can be seen from the graphs
that in the vacuum and in water the interaction of the electromagnetic wave with the
grating occurs in different ways. This is evident from the structure of the field. It should
be noted that the field is concentrated near the surface of themetal nanocylinder and is
enhanced in comparisonwith the casewhen the grating consists of dielectric nanorods.
In our case, the field intensity near the surface of the metal cylinder is approximately
5 times greater than the field intensity near the surface of the dielectric cylinder.

Figure 17: Dependence of the electric field intensity in a rectangular grating of nanocylinders in the cross
section along the vector E0 (a - is vacuum, b - is water): 1-Ag, 2-SiO2.

Figure 18: Dependence of the electric field intensity in a rectangular grating of nanocylinders in vacuum
in a section perpendicular to the vector E0

Figure 18 shows the dependence of the electric field intensity in a rectangular grating
of nanocylinders in a section perpendicular to the vector E0.

It should be noted that, in contrast to the quasi-static model, the wave decays. In
this figure, as in the previous, you can observe field amplification near the surface of
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the conductive nanocylinders. In a grating of nanorods that do not possess plasmonic
properties, the wave weakly decays and does not experience amplification.

It is seen from these dependences that the structure of a local field in a system
of regular conducting nanocylinders calculated by different methods is qualitatively
identical.
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