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Abstract
A dependence of the hyper-acoustic wave velocity on characteristics of the optical
fiber core is analyzed in this paper. The values of Brillouin frequency shifts for various
types of optical fibers at room temperature and without longitudinal tensile force are
presented. Having database of profiles of the Mandelstam – Brillouin backscattering
spectrums for fibers of different kinds and manufacturers allow to classify the optical
fibers in the optical cables and detect damaged sections of fiber optical communication
line.
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1. INTRODUCTION

To ensure a longstanding operating of fiber optical communication line (FOCL), it is
necessary to eliminate the longitudinal mechanical strains (upward of 0.2 %) in its
optical fibers (OF).

To detect sections of FOCL with high strain of the OF or changed temperature Bril-
louin optical time domain reflectometry (BOTDR) and Brillouin optical time domain
analysis (BOTDA) [1 – 3] are applied.

In BOTDRMandelstam – Brillouin backscattering spectrum (MBBS) along OF is logged
and evaluated.

An important advantage of BOTDR compared to BOTDA in the search for “problem”
sections of OF, that are within the optical cables, is sufficient access to only one end
of the OF.
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2. THE THEORY

The electromagnetic wave from the light signal source is partly dissipated in the back
direction with change of frequency in the Mandelstam – Brillouin scattering (MBS) by
acoustic phonons.

The Brillouin frequency shift (f𝐵) in OF is defined by:

𝑓𝐵 = 𝑓𝐿 − 𝑓𝑆 = 2𝑓𝐿𝑣𝐴𝑛/𝑐 = 2𝑣𝐴𝑛/𝜆𝐿, (1)

where f𝐿 is the laser radiation frequency (𝜆𝐿 – laser radiation wavelength), f𝑆 – fre-
quency of Stokes component, c is the light velocity, n is the refractive index of the OF
core, 𝜈𝐴 is the hyper-acoustic wave velocity in OF:

𝑣𝐴 =
√√√
⎷

𝜖𝑌 (1 − 𝜇𝑃 )
𝜌 (1 + 𝜇𝑃 ) (1 − 2𝜇𝑃 )

, (2)

where ε𝑌 is the Young’s modulus of OF, μ𝑃 is the Poisson’s ratio for OF, 𝜌 is the OF core
density.

A dependence graph of the hyper-acoustic wave velocity of the optical fiber on the
Poisson’s ratio is presented in Fig. 1.

If μ𝑃 = 0.17… 0.22 for fused quartz, then the substitution of μ𝑃 values in (2) gives the
equation

𝑣𝐴 = (1.03...1.07)√𝜖𝑌 /𝜌, (3)

which improves generally accepted equation [1 – 3]

𝑣𝐴 = √𝜖𝑌 /𝜌, (4)

as it includes a number of factors related to the OF core structure.

The relative change in the core density of quartz OF at small strains is connected to
the relative stretching by the formula [4]

Δ𝜌/𝜌 = −0.66Δ𝐿/𝐿. (5)

Change of Brillouin frequency shift (Δf𝐵) with OF temperature (T) is characterized
by a linear dependence:

Δ𝑓𝐵 (𝑇 ) = 𝑓𝐵 (𝑇 ) − 𝑓𝐵0 = 𝐶𝑡 ⋅ (𝑇 − 𝑇0) , (6)

where C𝑡 is the linearization factor depending on wavelength with particular Young’s
modulus, f𝐵 (T) is the frequency of MBBS maximum, T0 is an initial temperature (e.g.,
typical room temperature), f𝐵0 = f𝐵(T0) [14].
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Figure 1: The dependence of v𝐴(μ𝑃 )

Change of Brillouin frequency shift (Δf𝐵) with a degree of strain (s𝜀) at a specific OF
section is also described by a linear dependence:

𝑠𝜖 − 𝑠𝜖0 = Δ𝑠𝜖 =
𝑓𝐵(𝑠𝜖) − 𝑓𝐵0
𝑓𝐵0 ⋅ 𝐶𝑇

= Δ𝑓𝐵(𝑠𝜖)
𝑓𝐵0 ⋅ 𝐶𝑇

, (7)

where Δs𝜀 is the change of OF strain with respect to the initial value (s𝜀0); f𝐵(s𝜀) is
Brillouin frequency shift as a function of strain; f𝐵0 is the initial value of f𝐵 (f𝐵0= f𝐵(s𝜀0));
C𝑇 is a linearization coefficient at a certain temperature depending on wavelength;Δf𝐵

(z) is the f𝐵 as a function of initial value of f𝐵0.

The investigation of MBBS in OF from different manufacturers, OF with different
laws of dispersion behavior and with various structures of the OF core [5 – 9] are of
particular interest, since the power levels of the signal injected into OF are significant
in Brillouin reflectometry.

3. STATEMENT OF THE PROBLEM

Experimental researches with BOTDR “Ando AQ 8603” with the cooperation of CJSC
“Moskabel–Fujikura” (Moscow) were performed to examine the MBS features in single
mode optical fibers of different types, the MBBS profiles of optical fibers, the temper-
ature dependencies, and MBBS behavior from various influences.
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4. EXPERIMENTAL RESULTS

The theoretical and experimental investigations show that “initial level” (f𝐵0) for nor-
mal conditions (at room temperature and in the absence of mechanical stresses –
longitudinal strains) are varied based on different types of OF and manufacturers [5 –
14].

It is necessary to define “initial level” of f𝐵0 and the coefficients for temperature and
strain changes of OF for each kind of OF.

Table 1 below presents the values of f𝐵0for all studied varieties of OF.

Table 1

Type of OF f𝐵0 values, GHz recommended
value of f𝐵0, GHz

v𝐴, km/s (n =
1.468)

n𝑒 (v𝐴 = 5.7
km/s)

G.652 10.82... 10.85 10.84 5.71 1.468

G.653 (DSF) 10.47... 10.49 10.47 5.53/5.63/5.72 1.42/1.45/1.47

G.655 (NZDSF) 10.61... 10.64 10.63 5.61 1.443

G.657 10.77... 10.80 10.79 5.70 1.466

EDF 10.68... 10.70 10.70 5.64 1.450

“Panda” 10.40... 10.42 10.41 5.50 1.413

G.652 is a standard widespread single mode fiber.

G.653 is a dispersion-shifted single mode fiber (DSF) [7].

NZDSF (G.655) is a non-zero dispersion-shifted single mode optical fiber [8].

G.657 is a single mode fiber with high resistance to bending.

EDF is an erbium-doped fiber [13].

“Panda” is a kind of polarization maintaining fiber (PMF) [10 – 12].

In use for calculations f𝐵0 from the table 1, the strain dependencies on temperature
for various OF are practically identical.

The values of v𝐴 are obtained by the formula (1) for the values of f𝐵0 from the table
1 (in case of n = 1.468).

The values n𝑒 (equivalent values of n) are obtained by the formula (1) for the values
of f𝐵0 from table 1 (in case of v𝐴 = 5.7 km/s).

The findings of researches indicate that the MBBS profiles of optical fibers of various
types and manufacturers are different.
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In addition, with different impacts on the fiber (the temperature changes or the
changes of the longitudinal tensile force) in its profile not only the value of Brillouin
frequency shift (f𝐵), but the form of the MBBS can be changed.

For example, MBBS profiles of the G.653-DSF for normal conditions (at room tem-
perature and in the absence of mechanical stresses) are presented in Fig. 2

Figure 2: The DSF profile without longitudinal tensile force.

The first peak is observed on a frequency of 10.46 GHz, the second peak – on a
frequency of 10.66 GHz and the third peak – on a 10.86 GHz.

Under the influence of the longitudinal tensile force of 2 N, not only shift of the first
peak on a frequency of 10.55 GHz, but some change in the MBBS shape are observed,
that is shown in Fig. 3(relative levels of the second and the third peaks have changed).

Figure 3: The DSF profile with longitudinal tensile force of 2 N.

By increasing the longitudinal tensile force to 5 N (or in case of significant tem-
perature changes) the MBBS graphs near the second and the third peaks can be
“smoothed” that is presented in Fig. 4
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Figure 4: The DSF profile with longitudinal tensile force of 5 N.

This effect can be explained by the presence of different layers in the OF core
structure that have the most pronounced in DSF.

The example of the usual DSF core structure is shown in Fig. 5.

Figure 5: The dependence of the DSF core refractive index on the core radius n(r).

The dependence of the core refractive index on the core radius n(r) demonstrates
that some layers have different refractive indexes (n1, n2, n3) (Fig. 5).

This effect can be explained by the presence of different layers in the core structure
of the fiber that are most pronounced in the DSF. Multiple acoustic modes are gener-
ated in the DSF. Each of these modes exerts the influence on the shape of the MBBS
(the appearance of additional peaks) of the light signal.

Analysis of equation (1) shows that the velocity change of hyper-acoustic wave or
the refractive index value of the fiber core affect the changes of the f𝐵. In external
influence on OF (the temperature change, the transverse or longitudinal force), the
reaction of the different layers in the fiber core structure may be different. In this case,
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for each layer the conditions (the layer density, the refractive index of the material and
the hyper-acoustic wave velocity in the layer) are changed in its own way, leading in
the result to change the shape of the MBBS in OF.

5. CONCLUSION

Presence of database of MBBS profiles for different OF types and manufacturers pro-
vides an opportunity to classify OF in FOCL, and to detect fault sections [7 – 11].

The possibility of structure and composition determination of the layers forming
the OF core, according to the obtained MBBS profiles and frequencies of all MBBS
peaks is of practical value, since the introduction of doping material and change in
their concentration affect the hyper-acoustic wave velocity in OF and the effective
refractive index.

To detect sections with modified temperature and strain, it is desirable to have a
reference BOTDR-trace for the investigated OF in normal conditions (at room temper-
ature and in the lack of mechanical stress). Such trace facilitates the timely detection
of “problem” section in FOCL, and therefore, the elimination of this situation prior to
the fiber breaking of FOCL.
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