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Abstract
The nonlinear polariton transmission through resonantly absorbing Bragg grating
(RABG) with randomly varying lattice spacing is studied. In this work are presented
the results of numerical simulation of propagation stability of polaritonic solitary
wave consisting of matter wave coupled with counter propagating light waves
which propagate through dielectric medium, containing periodically placed in the
dielectric waveguide thin dielectric films with metallic nanoparticles (or quantum dots,
nanoagregates with nonlinear dielectric properties). The influence of lattice spacing
deviations from mean value (average) of the lattice spacing is described in the model
equations by random multiplicative noise set in the phases of forward and backward
electric components of electromagnetic wave. As the initial condition it was used the
solitary wave solution of the model describing nonlinear wave propagation in perfect
nonlinear RABG. The results of numerical simulations show that phase fluctuations
lead to periodic oscillations (with the period 2𝜋) in the ratio of the amplitude and
the width of polariton. This ratio is a constant in the perfect periodic nonlinear Bragg
grating. Oscillations in the ratio of the amplitude and the width of polaritonic solitary
wave decrease with its propagation in imperfect nonlinear Bragg grating.

Keywords: solitons, polaritons, Bragg grating.

1. Introduction

The beginning of the last century was the fruitful period that has arisen the new
branches of physics concerned in the structure of the matter, for example atomic and
quantum physics, condensed matter physics. The interest to very promising properties
of semiconductor materials resulted in development of physics of semiconductors that
in turn caused the origin of the era of electronics. It is hardly imagine our daily life
without devices containing integrated circuits. Revolutionary invention of the laser in
the 1957 and the following progress in the integrated optics and optical fiber fabrication
gave rise to the photonics. One of its branches, namely optical fiber communication,
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developed considerably during more than 30 years. In the beginning of conventional
fiber optics the principal requirement to the fiber media was its ability to guide light
pulses without distortion for the most long distance. The other inherent characteristics
such as inhomogeneity, dispersion and nonlinearity mostly were considered as side
and often undesirable kinds. The modern technology of fiber fabrication successfully
overcomes all the difficulties caused by the material properties of the fiber: the profile
of the fiber can be made uniform, the losses are very low (∼0.2 dB/km) and can be
compensated by amplifiers, and the dispersion can be managed.

In the conventional fibers light propagates due to the total internal reflection which
is implies that the refractive index of the core is high comparing with the cladding. The
common hollow core fibers are leaky for the light waves, however the improvement of
their waveguide properties based on the Bragg reflection of the transversemodes was
proposed [1]. The idea was to create a fiber with refractive index periodically changing
in the cross section along the radius of the fiber. The solid-core concentric structure
made using method of modified chemical vapor deposition (MCVD) was reported [2].
A detailed review related to the state of art in the fabrication and applications of the
photonic crystals is given in [3]. The interesting idea of hollow core photonic bandgap
fiber fabrication was reported in [4]. The photonic crystal fiber (PCF) preform was
constructed from a bunch of stacked cylinder silica capillaries. The silica canes were
removed from the center of the preform to create a hollow core structure. After being
fused and drawn down the fiber with perforated cross section and the hole in the
center was obtained. Another technique to produce PCF from the material with low
melting temperature is the extrusion. Comparing to the previously described method
the extrusion can provide a huge variety of the fiber cross-section profiles. The typical
materials here are the polymers [5] as well as tellurite glass or chalcogenides. The
advantages of hollow core PCF are in the enhancing of the nonlinear processes at high
intensities (harmonic generation, stimulated Raman and Brillouin scattering). Having
intrinsic filtering properties they also might serve as spectral filtering devices. Filling
the hollow core of fibers with gases, molecular aggregates, bacteria or viruses opens
implementations of hollow core PCF in the biology and in chemistry. The guidance of
the dielectric polystyrene particles of micron sizes under radiation pressure of argon
ion laser in the hollow core photonic bandgap fiber was reported in [6]. Advantages
of this non-intrusive technique are self-evident.

The presence of the gap in the permitted range of the linear wave spectra that is
arises due to the structure periodicity offered an incentive in fabrication of the fiber
waveguides with its refraction index periodically varying along the fiber length. Fiber

DOI 10.18502/ken.v3i3.2031 Page 216



 

KnE Energy & Physics PhIO-2018

Bragg gratings are produced using phase mask created by electron beam lithography.
In [7] the stitching error-free 100 mm phase mask was constructed for production of
the fiber Bragg gratings. The new technique for simultaneous laser writing [8] of Bragg
gratings by UV laser on photosensitive germanium doped silicawas reported in [9]. The
review on technology of fiber Bragg grating fabrication is given in [10].

The methods for fabrication the periodic structure with nanometer-scale thin films
containing metallic nanoparticles or molecules are the electron beam deposition and
layer-by-layer adsorption technique [11].

Though the linear properties of light coupled with excitations of the medium inspire
many researchers in the optics of nanomaterials, the consideration of nonlinear
response of the mediumwill lead to understanding of muchmore complex and intrigu-
ing optical phenomena. In [12] it was considered the phenomenon of second harmonic
generation in the nonlinear medium containing resonant metallic nanoparticles, and
it was found the solitary wave solution for the wave of medium polarization coupled
with electric field of the light pulse. In the papers [13-15] the model is developed
describing the ultrashort (comparing to the relaxation time in the medium) light
pulse propagating through the ideal periodic Bragg grating with resonant metallic
nanoparticles. The nonlinear dielectric properties of metallic nanoparticles implanted
into the thin dielectric films, which periodically placed in the optical waveguide, are
described by cubically nonlinear Duffing equation. This model of nonlinear oscillator
also properly describes many other nanoaggregates having dielectric properties such
as ensembles of quantum dots, atoms and dipole molecules. The authors of the
works [13-14] found the solitary wave solution for the electric field of the light pulse
coupled with nonlinear polarization of the medium. The solution exists even for the
case of inexact resonance between the frequency of dimensional quantization of
nanoparticles and carrier frequency of the electromagnetic wave, as well as for inexact
resonance between the wave vector of reciprocal lattice - Bragg vector and the wave
vector of the light wave. The excited state of themedium polarization coupled with the
light wave is named polariton [16-17]. The dispersion relation for the model considered
in [13-14] corresponds to polaritonic spectrum.

Recently there was a splash of interest in the localization of light in the disordered
media [18-20]. It is noteworthy that dispersion relation will give the answer concerning
the possibility of light localization in the medium. For example in the one dimensional
model the presence of the defect in the lattice will gives the peak in the density of
states. As the group velocity is defined by the formula 𝜐𝑔 = 𝜕𝜔/𝜕𝑘, where 𝜔 is the
frequency and 𝑘 is the wave vector of the electromagnetic wave, the points where
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𝜐𝑔 → 0 are the frequencies of the localized modes. Light pinning by the defect in a
nonuniform resonant structure is reported in [21]. Depending on the strength of the
defect the pulse can pass through with low radiation or to localize in the defect. The
action of the second pulse could lead to depinning of the initial pulse or to trapping
both of them in the defect. Trapping Bragg solitons by a pair of localized defects is
demonstrated in [22]. This problem is very interesting for the experiments on “standing
light” and from the viewpoint of working up the devices with light by light controlling.

In the paper [23] a model of distributed Bragg grating was considered with taking
into account inhomogeneity of density of resonant atoms in nonlinear medium to
investigate numerically the propagation of polaritons, coupled solitary waves of polar-
ization and electric field, in such inhomogeneous medium. In the numerical simulation
a solitary wave solution derived by the authors of papers [13-14] is used as the initial
condition to study the propagation and scattering of the solitary waves at the density
defects. The three types of defects: microcavity - linear medium without resonant
nanoparticles, groove - the defect span with reduced density of nanoparticles, and
stripe - the defect with high density of resonant atoms were discussed. The nonlinear
polariton transmission and scattering at defects, trapping of solitary wave in microcav-
ity placed in the resonantly absorbing Bragg grating are demonstrated by numerical
simulations.

The Bragg gratings are usually fabricated by laser writing on the photoresist with
subsequent etching of the unexposed regions, or by the chemical layer deposition
methods. In the fabrication process the inaccuracy of measurement of the distance
between layers and inexactitude of the layer deposition is always exists. There are
two types of the errors can occur: the former is when the error is determined only by
measurement of the whole sample (laser writing). In this case during the fabrication
process the error in the distance between resonant films is corrected in such a way
that the error at the length of the sample is comparable to the measurement error.
In the second case the error accumulates all deviations of lattice period if consequent
deposition of the layers continues without control of the length of the waveguide,
for example in layer-by-layer adsorption using method of modified chemical vapor
deposition. If the layers are deposited one by one and the width of each dielectric
layer is checked, the error in the total length will grow as a square root of the length
of the sample. In this technological process the width of one layer is not correlated
with the neighbors.

The purpose of the numerical simulation discussed in this work is to investigate
the evolution of the ultrashort electromagnetic pulse propagating through the Bragg
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grating formed by the layers of resonant nanoparticles almost periodically placed in the
host dielectric waveguide. As themethod of the grating fabrication by the laser is more
precise, here it is considered the case when the layers of resonant nanoparticles are
arranged so that the distance between layers can be slightly small or large comparing
to the average value of the lattice spacing, but the total error is not exceeds the
error of measurement. The influence of such slight deviations is described by random
multiplicative noise in the phases of the forward and backward components of the
electric field of the electromagnetic wave.

2. Methods

It is performed numerical simulation of ultrashort electromagnetic pulse propagation
in the waveguide medium consisting of almost periodically placed in the host dielectric
waveguide thin dielectric films with metallic nanoparticles. Periodicity of the waveg-
uide results in strong scattering of the incident electromagnetic wave propagating in
the Bragg grating. In the model equations both forward and backward components
of electric field of electromagnetic wave are taken into account. The length of the
ultrashort electromagnetic pulse with picosecond duration is equal to hundreds of
double periods of the grating. The wavelength of the carrier wave of the light pulse is
comparable with a period of the grating, which is defined by the distance between the
adjacent thin films with resonant nanoparticles. Thus the condition of Bragg resonance
is almost fulfils. The model equations describing polaritonic wave propagating in the
periodic Bragg grating in the approximation of the slowly varying amplitudes were
obtained in [13]:

𝑖 (
𝜕𝑒1
𝜕𝜁 + 𝜕𝑒1

𝜕𝜏 ) + 𝛿𝑒1 = −𝑝, (1.1)

𝑖 (
𝜕𝑒2
𝜕𝜁 − 𝜕𝑒2

𝜕𝜏 ) − 𝛿𝑒2 = 𝑝, (1.2)

𝑖𝜕 𝑝𝜕𝜏 + Δ𝑝 + 𝜇|𝑝|2𝑝 = −(𝑒1 + 𝑒2). (1.3)

Dimensionless variables 𝑒1,2 are the slowly varying amplitudes of the electromag-
netic field and 𝑝 is the slowly varying polarization of the medium, which is determined
by the periodic resonant inclusions of layered nanoparticles. Here Δ = 2√𝜖(𝜔𝑑−𝜔0)/𝜔𝑝

is the detuning of a nanoparticle’s frequency of dimensional quantization from the
carrier frequency of ultrashort electromagnetic pulse. 𝛿 = 2Δ𝑞0𝑐/𝜔𝑝 is a wave vector
detuning, with Δ𝑞0 = 2𝑘0 − 𝑞0, where 𝑞0 = 2𝜋/𝑎0 is the wave vector of the lattice
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and 𝑎0 is a lattice constant. 𝑘0 = 𝜔0√𝜖/𝑐 is a wave vector of the light wave in the
media with permittivity 𝜖, 𝜔0 is the carrier wave frequency, 𝜔𝑝 is the plasma frequency
defined by concentration of metallic nanoparticles, 𝜔𝑑 is the frequency of dimensional
quantization of nanoparticles.

The solitary wave solution found in [13] reads as

𝑒1(𝜂) = −0.5(1 + 𝛼)𝑓𝑠(𝜂) exp(𝑖𝛿𝜏),

𝑒2(𝜂) = −0.5(1 − 𝛼)𝑓𝑠(𝜂) exp(𝑖𝛿𝜏), 𝑝(𝜂) = 𝑞(𝜂) exp(𝑖𝛿𝜏),
(2)

𝜂 = 𝜏 − 𝛼𝜁 , 𝛼 is a solitary wave parameter, 𝛽 = 2/(𝛼2 − 1), 𝑓𝑠 = 𝑢 exp(𝑖𝜙), 𝑞 = 𝑟 exp(𝑖𝜓),

𝑢2(𝜂) =
4𝛽√𝛽

cosh[2√𝛽(𝜂 − 𝜂0)]
, 𝑟2(𝜂) =

4√𝛽
cosh[2√𝛽(𝜂 − 𝜂0)]

. (3)

𝜙(𝜂) = 𝜙0 ± arctan tanh[√𝛽(𝜂 − 𝜂0)], 𝜓(𝜂) = 𝜓0 ± 3 arctan tanh[√𝛽(𝜂 − 𝜂0)]. (4)

Initial phases are set in a such way that Φ0 = 𝜙0 − 𝜓0 = 𝜋/2 at 𝜂 → −∞.

The model which describes ultrashort electromagnetic pulse propagation in per-
fectly periodic structurewith spatially localized in the grating layerwith inhomogeneity
of density of resonant atoms in nonlinear medium was considered in the paper [23].
In the numerical simulation an exact solitary wave solution defined by equations (2)
and (3) was used as an initial condition to study the propagation and scattering of the
solitary waves at the density defects. The model equations were the following:

𝑖 (
𝜕𝑒1
𝜕𝜁 + 𝜕𝑒1

𝜕𝜏 ) + 𝛿𝑒1 = −𝛾 (𝜁) 𝑝, 𝑖 (
𝜕𝑒2
𝜕𝜁 − 𝜕𝑒2

𝜕𝜏 ) − 𝛿𝑒2

= 𝛾 (𝜁) 𝑝, 𝑖 𝜕𝜕𝜏 𝑝 + Δ𝑝 + 𝜇 |𝑝|2 𝑝 = − (𝑒1 + 𝑒2) .
(5)

Distribution of nanoparticles density in different types of defects was defined by
the parameter 𝛾 (𝜁). A constant value 𝛾 (𝜁) = 1 at the length of the whole grating
corresponds to Bragg grating without defects. Microcavity defect is defined by 𝛾 (𝜁) =
0, 𝛾 (𝜁) < 1 corresponds to groove defect, 𝛾 (𝜁) > 1 corresponds to stripe defect.

It was shown in [23] that the slow solitary wave propagating through nonlinear
RABG can be captured in a wide defect - microcavity placed in the Bragg grating. Inside
the microcavity the light pulse propagates by reflecting from the boundaries of the
defect, where its radiation partly scatters.

A thorough derivation of the continuous equations for the disordered media is
a distinct and difficult problem to solve. Here is used the phenomenological model
which accounts for the phase variations of the slowly varying amplitudes of forward
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and backward electric components of ultrashort electromagnetic pulse. These random
phases assumed to appear due to randomness of deviations of the lattice constant. The
equations of the model describing the ultrashort electromagnetic pulse propagation
in the imperfect Bragg grating with resonant absorption are the following:

𝑖 (
𝜕
𝜕𝜁 + 𝜕

𝜕𝜏) 𝑒1 + 𝛿𝑒1 = −𝑝 exp (𝑖𝜙 (𝜁)) (6.1)

𝑖 (
𝜕
𝜕𝜁 − 𝜕

𝜕𝜏) 𝑒2 − 𝛿𝑒2 = 𝑝 exp (−𝑖𝜙 (𝜁)) (6.2)

𝑖 𝜕𝑝𝜕𝜏 + Δ𝑝 + 𝜇 |𝑝|2 𝑝 = − (𝑒1 exp (−𝑖𝜙 (𝜁)) + 𝑒2 exp (𝑖𝜙 (𝜁))) . (6.3)

Wave vector detuning 𝛿 = 2(𝑐/𝜔𝑝)Δ𝑞0 with Δ𝑞0 = 2𝑘0 − 𝑞0, 𝑞0 = 2𝜋/𝑎0 is mean wave
vector of the lattice with mean lattice spacing 𝑎0. 𝜙 (𝜁) is the random phase, defined
as

𝜙(𝜁) = 2𝜋
𝑎20 ∫

𝐿

0
𝛿𝑎(𝜉)𝑑𝜉 << 1. (7)

The noise in the phase is considered as Gaussian and delta-correlated, correlation
between the phases of wave at the points 𝜁1 and 𝜁2 is⟨𝜙 (𝜁1)𝜙 (𝜁2)⟩ = 𝐷𝛿 (𝜁1 − 𝜁2). 𝐷
is the dispersion of the random phase, 𝐷 = 𝜎2, 𝜎 is standard deviation.

In numerical simulations the condition of the exact resonance is assumed: 𝛿 = 2𝑘0−
𝑞0 = 0 for the propagation constant (wave vector) 𝑘0 of the electric field of the light
pulse and mean wave vector of the lattice 𝑞0 = 2𝜋/𝑎0. The condition Δ = 0 of the
exact resonance between the frequency of dimensional quantization of nanoparticles
and electromagnetic wave carrier frequency is also fulfils. Nonlinearity parameter in
numerical simulations is 𝜇 = 1. Solitary wave parameter 𝛼 = 1.5 characterizes solitary
wave used in numerical simulations as the initial pulse set at 𝜏 = 0. It was imple-
mented implicit finite difference scheme to solve the model equations. The steps in
time and the coordinate were the same and equal to2.5 ∗ 10−4. To avoid the reflection
on the boundaries the large computational window was used. The computation over
normalized coordinate variable 𝜁 was performed at the interval [𝜁0, 𝜁𝐿] = [0, 40], for
the normalized time variable 𝜏 the computational interval is [0, 40]. The center of the
initial pulse characterized by solitary wave parameter 𝛼 = 1.5 is at 𝜁 = 5.
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3. Results

In the numerical statistical experiment the parameters (the amplitude, width – pulse
duration at the half of the maximum, and position of the pulse maximum) of soli-
tary polaritonic wave propagating in imperfect Bragg grating were measured. It was
performed a set of 370 of realizations of the random grating characterized with the
standard deviation 𝜎 = 0.1and 200 realizations with the standard deviation 𝜎 = 0.3
in the phase (7). At the Fig. 1 is illustrates one realization of solitary polaritonic wave
propagation in the random grating which provides standard deviation 𝜎 = 0.3 for the
phase of the electric field components 𝑒1 and 𝑒2.

Figure 1: Three dimensional plots illustrating the solitary wave (characterized by parameter 𝛼 = 1.5)
propagation through the disordered Bragg grating leading to the standard deviation 𝜎 = 0.3 in the phases
of the counter propagating waves 𝑒1and 𝑒2 in the system of the equations (6). Electric field of the forward
wave 𝑒1 is illustrated by the fig. (a), backward wave 𝑒2 corresponds to fig. (b), polarization 𝑝 corresponds
to fig. (c).

One can see that the scattering of solitary wave occurs on numerous fluctuations
of the grating, while the polariton propagates in the random Bragg grating. To inves-
tigate the evolution of the nonlinear polariton in the random Bragg grating, the two
moments (the average value and the standard deviation) of following parameters of
solitary polaritonic wave were measured: amplitude and the width (defined as the
pulse duration at the half of the amplitude maximum), position of the pulse maximum
for the forward and backward electric field components 𝑒1 and 𝑒2, as well as for the
polarization component 𝑝.

The amplitude and the width of the pulse propagating through the random Bragg
grating were calculated and processed for all the realizations. It was found that the
averaged values of the pulse amplitude and the width are oscillating with decay to
certain value. In the set of pictures of Figs. 2-4 are represented the plots showing the
evolution over time 𝜏 of the averaged over random grating realizations amplitude,
width and location of the pulse maximum of the electric components 𝑒1 and 𝑒2, as
well as polarization 𝑝 of polariton propagating through random (𝜎 = 0.1 (dot line)
and 𝜎 = 0.3(solid line)) Bragg grating comparing to the time dependence of these
parameters for the polaritonic solitary wave propagating in the perfect Bragg grating
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(dashed line). Fig. 2 corresponds to forward wave 𝑒1, Fig. 3 – to the backward wave 𝑒2,
and the Fig. 4 – to the wave of polarization 𝑝.

 
(a) 

 
(b) 

 
(c) 

 

Figure 2: The plot illustrating evolution over time 𝜏 for averaged over random grating realizations of
amplitude (a), width (b) and position of the pulse maximum (c) of the forward wave 𝑒1.

 
(a) 

 
(b) 

 
(c) 

 

Figure 3: The plot illustrating evolution over time 𝜏 for averaged over random grating realizations of
amplitude (a), width (b) and position of the pulse maximum (c) of the backward wave 𝑒2.

 
(a) 

 
(b) 

 
(c) 

 

Figure 4: The plot illustrating evolution over time 𝜏 for averaged over random grating realizations
amplitude (a), width (b) and location of the pulse maximum (c) of polarization 𝑝 component of polariton,
propagating through the random Bragg grating.

The amplitude and width of the pulse are oscillating with the decay to certain value.
The next plots at the Fig. 5 are representing the time evolution of the ratio 𝛿 = 1− 𝑎𝑠𝑡𝑜𝑐ℎ𝑤0

𝑎0𝑤𝑠𝑡𝑜𝑐ℎ

between amplitude 𝑎𝑠𝑡𝑜𝑐ℎ and width 𝑤𝑠𝑡𝑜𝑐ℎ of the solitary wave propagating in random
lattice and the amplitude 𝑎0 and width 𝑤0 of the initial pulse corresponding to exact
solitary wave solution with 𝛼 = 1.5 for the perfectly regular lattice.

The ratio of the averaged over realizations amplitude and the pulse width tends
to the initial ratio (corresponding to solitary wave in the model of perfect periodic
Bragg grating) for the forward wave 𝑒1 both for 𝜎 = 0.1 and 𝜎 = 0.3 for the random
phase in the equations of the system (6). The settled values of ratios of amplitude and
width of the solitary wave for the backward 𝑒2 and polarization 𝑝 waves seem to be
close by their absolute values. The difference of ratio of the amplitude and width for
the polariton components in the random media comparing to the unperturbed initial
solitary wave is in 10 % for the backward wave 𝑒2 and wave of polarization 𝑝, and in
5 % for the forward wave 𝑒1 at 𝜎 = 0.3. At 𝜎 = 0.1 the distinction is almost negligible.
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Figure 5: The ratio 𝛿 = 1 − 𝑎𝑠𝑡𝑜𝑐ℎ𝑤𝑠𝑜𝑙
𝑎𝑠𝑜𝑙𝑤𝑠𝑡𝑜𝑐ℎ

between amplitude and width of the solitary wave depending on time
𝜏. The left panel (a) corresponds to 𝜎 = 0.1 for the random phase, right panel (b) corresponds to 𝜎 = 0.3.
Thick solid line corresponds to the component of electric field of the wave 𝑒1, thin solid line corresponds
to 𝑒2, dot line corresponds to polarization 𝑝.

At the Fig. 6 is illustrated the behavior of the second moments - standard devia-
tions of amplitude and width of the pulse from their average values (first moments)
calculated previously.

From the plots shown at the Fig. 6 one can see that for standard deviation in the
phase 𝜎 = 0.3 for the electric field components 𝑒1 and 𝑒2 the standard deviation of
the amplitude and width of the forward wave (component 𝑒1 of nonlinear polariton)
seems to grows with the time, the same deviations for backward wave (component
𝑒2) and polarization 𝑝 comes out to a constant (about 0.01) with the time. Of cause the
better statistics of realizations should be accumulated for more exact plots but even
these results show that the polariton can evolve in the grating with weak random
fluctuations of lattice spacing. The nonlinear polariton propagates in the Bragg grating
as a solitary wave with fluctuations along the distance in its amplitude and width.

The probability density function (PDF) does not significantly depend on the number
of the realizations for neither 𝜎 = 0.1 (Fig. 7) nor 𝜎 = 0.3 (Fig. 8) for all components of
polariton.

4. Conclusion

In this paper are presented the results of numerical modeling of polaritonic solitary
wave propagation in the Bragg grating with random lattice spacing. It is shown that
random fluctuations in the phases of electromagnetic waves resulting from variation
of lattice spacing lead to periodic oscillations (with the period 2𝜋) in the amplitudes and
the widths of the solitary pulses. The amplitude of these oscillations grows with the
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(a) (b) 

(c) (d) 

(e) (f) 

 

Figure 6: The plot for standard deviations over random grating realizations of amplitude (left panels) and
the width (right panels) of electric fields 𝑒1 (figs. (a) and (b)) and 𝑒2 (figs. (c) and (d)) of solitary polaritonic
wave and polarization 𝑝 (figs. (e) and (f)) in the random media leading to the standard deviation in the
phase 𝜎 = 0.3 (solid line) and 𝜎 = 0.1 (dashed line).

(a) (b) (c) 

 

Figure 7: The plot for PDF of amplitude for the forward wave 𝑒1(a), backward 𝑒2(b) and the polarization 𝑝
(c) of polariton depending on the number 𝑁 of the random grating realizations for 𝜎 = 0.1.

increase of the amplitude of the random phase. Oscillations decay with the distance,
and probably the stationary regime (without periodic energy swapping between the
component of polariton) will sustain. The random weak fluctuations of the lattice
spacing that are responsible for the random fluctuations in the phase of electric com-
ponents of polariton, do not disrupt the polaritonic wave binding light photons with the
lattice phonons, thought the radiation occurs during its evolution in the grating, and
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Figure 8: The plot for PDF of amplitude for the forward wave 𝑒1(a), backward 𝑒2(b) and the polarization 𝑝
(c) of polariton depending on the number 𝑁 of the random grating realizations for 𝜎 = 0.3.

the amplitude decreases. Velocity of the pulse changes slightly even for a standard
deviation 𝜎 = 0.3 in the phase of the electric components of polariton. The ratio
between amplitude and width of the residuary pulse is close to constant at large times
(and propagation distances). This ratio measured at the end of computational time
interval differs from the initial (corresponding to solitary solution in the case of exact
resonance) in 10 % for the backward wave and wave of polarization and in 5 % for the
forward wave at 𝜎 = 0.3. At 𝜎 = 0.1 the distinction between polaritons propagating in
the perfect and in the weakly disordered Bragg grating is almost negligible.
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