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Abstract
The problem of sub-picosecond plasmon-polariton pulse formation in metal/dielectric
interface due to collective decay of excited quantum dots, placed in the dielectric
layer near the metal surface, is considered. Theoretical approach to selection of
semiconductor quantum dots and dielectric host medium to increase the energy
transmission of quantum dot collective excitations into surface plasmon-polariton
modes of waveguide spaser is developed.

1. Introduction

Collective processes in a system of quantum emitters for a long time remain a subject
of intensive studying [1] with both theoretical and experimental points of view. New
opportunities of the well-known cooperative effects in optics can be associated with
the collective behavior of the plasmonic oscillators pumped by a near-field of excited
chromophores (semiconductor quantum dots, dye molecules, etc. [2]). The kinematics
of individual localized systems ”quantum dot+metal nanoparticle” [3], the core-shell
nanocrystals [4] is well described in the framework of spaser theory [2]. However,
generated plasmons in such systems are strongly localized and their collective dynamic
is restricted to the near-field area of the plasmonic nanoparticles [5]. Suitable inter-
faces for observing collective processes with surface plasmon-polariton (SPP) can be
planar metal/dielectric waveguides [6] which were already implemented in practice
[7]. One of approaches to solving the problem of fast damping of plasmons in such
systems is connected with use of photonic crystals as a dielectric layer [8]. In this
case, the long-range SPPs with a maximum energy of the field in the dielectric region
are formed. On the other hand, compensation of damping of plasmons in metal can be
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realized in the model of the dissipative waveguide spaser with a near-field pumping
from the chromophores placed in the dielectric layer near a metal surface.

In this work the approach to choosing specific chromophores and the dielectric host
medium to increase the energy transmission efficiency of collective excitations of
chromophores to SPPs modes in metal/dielectric waveguide is proposed. Considering
that the refractive index of the dielectric host medium is a complex value, we have
defined such conditions when the spontaneous emission rate of the chromophores
near the metal-dielectric interface [9], as well as the collective optical processes with
quantum emitters [10, 11] are almost completely suppressed by the influence of the
dielectric environment. Using model of the waveguide spaser the selfconsistent sys-
tem of the equations describing dynamics of excitons and propagated SPP pulses
was obtained. It is shown that in the mean-field approximation the self-consistent
problem can be reduced to a modified pendulum equation with an additional term of
nonlinear losses. A separatrix solution of the nonlinear equation, which corresponds
to the formation of the single SPP pulse in waveguide spaser model, was obtained. A
model of the waveguide spaser with an ensemble of CdS quantum dots placed in the
dielectric layer near the metal surface for the realization of the predicted effects was
proposed.

2. Master equation for collective process of
SPP generation in wavegide spaser

Consider themodel of an interface in Fig. 1a in the form of ametal/dielectric waveguide
[12] with two-level chromophores located inside a thin dielectric layer, the transition
frequency between the two levels 𝜔𝑎 = 2𝜋𝑐/𝜆𝑎 being resonant with the SPP frequency
𝜔𝑆𝑃𝑃 = 2𝜋𝑐/𝜆𝑆𝑃𝑃 (1-ground and 2-upper levels, respectively). By selecting a dielectric
medium with appropriate dispersion characteristics and providing the initial excitation
(inversion) of a dense ensemble of chromophores in this model, it is possible to pro-
duce the collective decay of excitons.

We assume that the characteristic size of the interaction region of the effective field
of SPP and chromophores ℎ = 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 satisfies the inequality ℎ << 𝜆𝑝 and the
inequality 𝐿𝑧≪𝑙𝑑 is also valid, where 𝑙𝑑 is the SPP decay length along the 𝑧 axis. The
corresponding Rabi frequency can be written in the form Ω = −(𝐴∇𝜙𝜇12𝜖) /ℏ, where

𝐴 = √ℏ𝑆/ (𝜖0𝜖𝑑
𝜕𝑆
𝜕𝜔), 𝜖 = √𝑁𝑝 is the SPP amplitude, 𝑁𝑝 is the number of SPP modes

in the interaction region, 𝜇12 is the transition dipole moment in a chromophore, and 𝜙
is the scalar potential of the plasmon field linearly decreasing with distance from the
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Figure 1: (a) Formation scheme of SPP pulses in a layered (planar) metal/dielectric waveguide pumped
by CdS QDs; (b) dependence of the transition energy on the CdS QD size (𝐸𝑔 = 2.42 𝑒𝑉 at 0 K for a bulk);
(c) parametric plane of the complex refractive index 𝑛 = 𝑛𝑅 + 𝑖𝑛𝐼 of a dielectric medium with separatrices
Γ𝜖 = 0 for the effective rate of radiative losses of QDs in this medium.

surface, ℏ is the Planck’s constant. In the case of excitation of a mode of the plasmon
field at frequency 𝜔, using the normalization ∫ |∇𝜙|2 𝑑𝑉 = 1 [13], the expression for
the Rabi frequency can be approximated by the function

Ω = 𝜇12√
𝑆𝑛

ℏ𝜖𝑑𝜖0𝑉
𝜕𝑆𝑛
𝜕𝜔

𝜖 = 𝑔𝜖.

For a metal-dielectric boundary, the relation

𝜆𝑆𝑃𝑃 = √
𝑅𝑒(𝜖𝑚) + 𝑅𝑒(𝜖𝑑)
𝑅𝑒(𝜖𝑚)𝑅𝑒(𝜖𝑑)

⋅ 𝜆0

is valid, where the parameters 𝜖𝑑 and 𝜖𝑚 (�̄�) = 1 − 𝜔2
𝑝/ (�̄�2 + 𝑖𝛾𝑠�̄�) are the dielectric

permittivities of dielectric (with QD) and metal, respectively. Here, 𝜔𝑝 = √4𝜋𝑛𝑚𝑒2/𝑚0

is the plasma frequency in a metal, 𝑚0 and 𝑛𝑚 are the electron mass and concen-
tration, respectively, 𝛾𝑠 is the electron collision frequency in the metal, �̄� = 2𝜋𝑐/𝜆0.
We chose the wavelength 𝜆0 = 387 𝑛𝑚 for our simulation. The spectral properties of
the metal-dielectric interface can be described by use of the Bergman’s parameter
𝑆 (𝜔) = 𝑅𝑒 (𝜖𝑑 /(𝜖𝑑 − 𝜖𝑚 (𝜔))) [2].

We assume that the pumping volume 𝑉 ′ is a dielectric containing QDs with the
characteristic radius 𝑎 and concentration 𝑁 >> 1021 𝑚−3. Assuming that the refractive
index 𝑛 = 𝑛𝑅 + 𝑖𝑛𝐼 of the dielectric environment of QDs is a complex quantity, where
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𝑛 = √𝜖𝑑 and 𝜖𝑑 is the complex permittivity, expressions for the radiative relaxation
rate Γ𝑎, the Rabi frequency Ω, and the effective frequency detuning Δ𝑎 can be written
in the form [14]

Γ𝜖 = Γ𝑎(𝑛𝑅𝑙𝑅 − 𝑛𝐼 𝑙𝐼 + 2 𝛿𝑎Γ𝑎
𝑙𝐼) , (1a)

Ω0 = Ω ⋅√𝑙2𝑅 + 𝑙2𝐼 , (1b)

Δ𝜖 = 𝛿𝑎(𝑙𝑅 −
Γ𝑎
2𝛿𝑎 (

𝑛𝐼 𝑙𝑅 + 𝑛𝑅𝑙𝐼)) + Δ𝑎, (1c)

where 𝑙 (𝑛) = 𝑙𝑅 + 𝑖𝑙𝐼 is a complex function for which 𝑙𝑅 = (𝑛2𝑅 − 𝑛2𝐼) /3, 𝑙𝐼 = 2𝑛𝑅𝑛𝐼 /3;
and 𝛿𝑎 is a small correction caused by the Lamb shift. It is assumed here that the
function 𝑙 (𝑛) = 𝐸𝑙/𝐸𝑀 coupling the Lorentz local 𝐸𝑙 and Maxwell 𝐸𝑀 fields will retain
its structure in the case of the near field through which SPP are excited in the scheme
in Fig. 1.

The parameter Γ∗𝑎 = 1/𝜏𝑅+1/𝜏𝐹 is the total rate of radiative (with the time 𝜏𝑅 = 1/Γ𝑎)
and nonradiative (with the time 𝜏𝐹 ) losses for QDs in vacuum. In the semiclassical
approximation, the system can be described similarly to the “metal nanoparticle in a
dielectric with chromophores” spaser model [2] with the help of equations for ele-
ments of the density matrix 𝜌 of a two-level chromophore:

̇𝜌12 = −(𝑖Δ𝜖 +
Γ𝜖
2 )𝜌12 + (𝑖Ω∗

0 + 𝑖𝜉0𝑢𝑅𝜌12 + 𝜉0𝑢𝐼𝜌12) 𝑛21, (2a)

̇𝑛21 = 2𝑖 (Ω0𝜌12 − Ω∗
0𝜌21) − 4𝜉0𝑢𝐼 |𝜌12|

2 − Γ𝜖 (1 + 𝑛21) , (2b)

where Δ𝑎 = 2𝜋𝑐 (1/𝜆𝑎 − 1/𝜆𝑆𝑃𝑃 ), 𝑛21 = 𝜌22 − 𝜌11. The Rabi frequency can be written

as Ω0 = 𝑔𝜖 ⋅ √𝑙2𝑅 + 𝑙2𝐼 , where 𝑔 = 𝜇12√𝑆𝑛/ (ℏ𝜖𝑑𝜖0𝑉
𝜕𝑆𝑛
𝜕𝜔 ) is the coupling constant and

𝜖 = 𝐴𝑝√𝜖𝑑𝜖0𝑉
𝜕𝑆𝑛
𝜕𝜔 / (ℏ𝑆𝑛) is the normalized field with the amplitude 𝐴𝑝 of the total field

produced by the perturbed electron density in a metal and the electromagnetic field
component in a dielectric.

The parameter 𝜉0 = 𝑁𝜇212/ (3ℏ𝜖0) in (2) determines the addition to the Rabi fre-
quency appearing due to transition from the Maxwell 𝐸𝑀 to the local field 𝐸𝑙 [14]
acting on a chromophore.

The dispersive and dissipative corrections

𝑢𝑅 = (𝑙𝑅𝜖𝑅 + 𝑙𝐼𝜖𝐼) / (𝜖2𝑅 + 𝜖2𝐼) ,
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𝑢𝐼 = (𝑙𝐼𝜖𝑅 − 𝑙𝑅𝜖𝐼) / (𝜖2𝑅 + 𝜖2𝐼) ,

respectively, are expressed in terms of the real and imaginary parts of the permittivity
of the host-medium [14] in which QDs are placed and have the physical meaning of the
additional frequency modulation and the effects of absorption (𝑢𝐼 < 0) or amplification
(𝑢𝐼 > 0) due to the local field (Fig. 2).

Figure 2: (a) Profiles of SPP pulse amplitude squared obtained by the numerical simulation of system
(2)–(3) in the following regimes: (a) neglecting the dissipation parameters Γ𝜖 = Γ𝑎 = 𝛾𝑝 = 0 𝑠−1; (b)
the dissipative regime with Γ𝜖 = Γ𝑎 = 6.3 × 1011 𝑠−1, 𝛾𝑝 = 4.1 × 1013 𝑠−1; (c) the regime of QD radiative
decay suppression Γ𝜖 = 0 in the host medium with 𝑛𝑅 = 1.6 and 𝑛𝐼 = 1.23; (d) dynamics of the angle
𝜃 (solid curve) and coefficients cos (𝜃) (dotted curve) and − cos (𝜃) (dashed curve) for regime (a). The
interaction parameters are 𝑔 = 8.1 × 1011 𝑠−1, 𝜉0 = 6.3 × 109 𝑠−1. The initial polarization of the medium is
𝜌12(0) = 𝑖𝜃0 = 𝑖/√𝑁𝑎 = 0.14𝑖, the normalization parameter is Λ = 5.7 × 1012 𝑠−1 for 𝑁𝑎 = 50.

The equation of motion for the Rabi frequency of SPP, which in the case of the exact
plasmon resonance has the form

Ω̇0 = − 𝑖
𝑡2𝑅
𝜌12 − 𝛾𝑝Ω0, (3)

where

𝑡𝑅 =
1

𝑔√𝑁𝑎
=
√√√
⎷

ℏ𝜖𝑑𝜖0
𝜕𝑆𝑛
𝜕𝜔

𝑆𝑛𝜇212𝑁
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determines the characteristic formation time for quantum correlations in Fig. 1a (com-
pare with the optical problem [15] when emitters are located in the field formation
region).

Note that the plasmon mode decay rate 𝛾𝑝 = 1/𝜏𝐽 + 1/𝜏𝑅 is high and determined by
the characteristic times 𝜏𝑅 and 𝜏𝐽 of radiative and “joule” losses, respectively. Under
conditions 1/𝜏𝐽 ≈ 30/𝜏𝑅 [16], radiative losses can be neglected, while “joule” losses
are determined by the collision frequency in a metal, i.e., 𝛾𝑝 ≈ 𝛾𝑠, and in problem (3)
in the absence of pump, the short-range SPP appear. The self-consistent problem (2)–
(3) will be valid only under conditions when the characteristic establishment time 𝑡𝑅
for correlations between QDs proves to be considerably shorter than 𝜏𝐽 . Because 𝑡𝑅 is
inversely proportional to the dipole moment of a chromophore, the relation 𝑡𝑅 < 𝜏𝐽
can be valid for pumping a distributed waveguide spaser by QDs with their giant dipole
transition moments.

We use the known dependence [17] of the 1𝑆 (𝑒) → 1𝑆 (ℎ) transition energy on the
QD diameter 𝐷𝑄𝐷 = 2𝑎 (Fig. 1b) for regime of strong confinement

𝐸1𝑆(𝑒)−1𝑆(ℎ) = 𝐸𝑔 + 2ℏ
2𝜋2
𝐷2
𝑄𝐷

(
1
𝑚𝑒

+ 1
𝑚ℎ)

, (4)

where 𝑒 is the electron charge, 𝑚𝑒 and 𝑚ℎ are the effective electron and hole masses,
respectively, in the volume of the QD material with the permittivity 𝜖𝑞𝑑 and band gap
energy 𝐸𝑔 [18, 19]. The corresponding parameters for CdS are 𝑚𝑒 = 0.19𝑚0, 𝑚ℎ = 0.8𝑚0

and 𝜖𝑞𝑑 = 9 [20], which gives𝐷𝑄𝐷 = 1.56 𝑛𝑚. Bohr radius of exciton𝑅𝑒𝑥 for CdS is 2.5 𝑛𝑚
[21] therefore strong confinement regime [22] will be observed for the considered QDs,
and energy sublevels of conductivity zone will be essentially separated. The dipole
moment of the corresponding interband transition in QDs is assumed equal to 𝜇 =
𝜇12 = 5 × 10−29 𝐶 ⋅ 𝑚 [2].

For chosen model parameters and the QD concentration 𝑁 = 7 × 1021 𝑚−3, the
characteristic correlation time is 𝑡𝑅 = 124 𝑓𝑠 and the delay time 𝑡𝐷 = 414 𝑓𝑠 for
the number of chromophores in the interaction region 𝑁𝑎 = 50 (here we assume that
𝑁𝑎 = 𝑁𝑝). The duration of a formed SPP monopulse is only about 200 𝑓𝑠 for ideal
conditions Γ𝜖 = Γ𝑎 = 𝛾𝑝 = 0 𝑠−1 in Fig. 2a. For dissipative regime in Fig. 2b we take
into account the rate of decay Γ𝜖 = 6.3 × 1011 𝑠−1 for QD near the metal surface [23]
and the rate of decay 𝛾𝑝 = 4.1 × 1013 𝑠−1 for plasmon. In this case we also find the
possibility for the formation of SPP pulses, since the characteristic time 𝑡𝑅 is shorter
than the characteristic decay times in the system.

However, taking (1a) into account, the choice of the appropriate dielectric host-
medium can partially or completely compensate the increase of Γ𝑎 (Fig. 1c), but it
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is also obvious that the properties of natural media are strongly restricted. Thus, for
silica at the wavelength under study 𝜆𝑆𝑃𝑃 = 192 𝑛𝑚, we have 𝑛𝑅 = 1.6, 𝑛𝐼 = 5 × 10−7

[24] and Γ𝜖 = 2.43Γ𝑎. To completely compensate relaxation processes in (2a) (Γ𝜖 ≡
0), the required combination of dispersion-dissipative parameters should satisfy the
condition 𝑛𝑅𝑙𝑅 − 𝑛𝐼 𝑙𝐼 = 0 (be neglecting a small Lamb shift), which is satisfied, for
example, for the choice 𝑛𝑅 = 1.6 and 𝑛𝐼 = 1.23. Such conditions can be fulfilled for
an artificial microstructured dielectric material with specified dispersion– dissipative
characteristics (the Cole-Cole diagram). They lead to the significant increase in the
SPP pulse intensity, while energy transfer from chromophores to radiation proves to
be suppressed (see Fig. 2c). In this case, the influence of the local field increases, the
absolute values of its parameters increase (corrections 𝑢𝑅 = 0.37 and 𝑢𝐼 = −0.158 in
(2)) and the formation dynamics of SPP pulses changes.

3. Collective dynamics of a waveguide spaser in
the mean field approximation

To analyze the contribution of dissipative effects related to the imaginary part 𝑢𝐼 of
the local field correction, we can neglect the corresponding phase effects with 𝑢𝑅 in
(2) and decay in (2)–(3) and to pass in the mean field approximation to a simplified
system of self-consistent equations for a medium

̇𝜌12 = (𝑖Ω∗
0 + 𝜉0𝑢𝐼𝜌12) 𝑛21, (5a)

̇𝑛21 = 2𝑖 (Ω0𝜌12 − Ω∗
0𝜌21) − 4𝜉0𝑢𝐼 |𝜌12|

2 (5b)

and the effective field

Ω̇0 = −𝑖𝑔2𝑁𝑎𝜌12 (6)

formed in it.

By passing to the representation for the Rabi frequency and polarization in the form

Ω0 =
1
2 (𝑈𝑒

−𝑖𝐾0𝑡 + 𝑈 ∗𝑒𝑖𝐾0𝑡) , 𝜌12 =
1
2𝑅 ⋅ 𝑒−𝑖𝐾0

where 𝐾0 = 𝜔𝑆𝑃𝑃 𝑡 − 𝑘𝑆𝑃𝑃 𝑧, and assuming that 𝑍 = 𝑛21, we can obtain the system
of Maxwell-Bloch equations for a spaser taking into account the (dissipative) local
response of the QD environment

�̇� = − 𝑖2 (𝑈𝑅
∗ − 𝑈 ∗𝑅) − 𝜉0𝑢𝐼 |𝑅|2 , (7a)

DOI 10.18502/ken.v3i3.2030 Page 210



 

KnE Energy & Physics PhIO-2018

�̇� = 𝑖 (𝑈 − 𝑖𝜉0𝑢𝐼𝑅)𝑍, (7b)

�̇� = −𝑖𝑔2𝑁𝑎𝑅. (7c)

By passing to new dimensionless variables 𝛿0 = −𝑖𝑈Λ and 𝜏 = 𝑡 ⋅Λ, where Λ = 𝑔√𝑁𝑎

and setting 𝑅∗ = 𝑅 and 𝛿∗ = 𝛿, we represent system (7) in the form

𝜕𝑍
𝜕𝜏 = 𝛿0𝑅 − 𝜉0𝑢𝐼

Λ |𝑅|2 , (8a)

𝜕𝑅
𝜕𝜏 = −𝛿0𝑍 + 𝜉0𝑢𝐼

Λ 𝑅𝑍, (8b)

𝜕𝛿0
𝜕𝜏 = −𝑅. (8c)

The solution of system (8) can be written in the form 𝑍 = cos (𝜃) and 𝑅 = sin (𝜃),
where 𝜃 determines the angle of the so-called Bloch vector with coordinates 𝑍 and 𝑅
and their substitution to (8) gives the equation for the angle

̇𝜃 = −𝛿0 +
𝜉0𝑢𝐼
Λ sin (𝜃) . (9)

By substituting the expression for 𝛿0 from (9) into (8c), we obtain a new variant of
the pendulum equation with the nonlinear harmonic losses/decay term

̈𝜃 − 𝐾 cos (𝜃) ⋅ ̇𝜃 = sin (𝜃) , (10)

where the amplitude of the decay coefficient is defined as 𝐾 = 𝜉0𝑢𝐼 /Λ. In the absence
of the loss modulation, when 𝐾 cos (𝜃) ⋅ ̇𝜃 = 𝐾 ⋅ ̇𝜃, Eq. (10) is reduced to the usual
nonlinear pendulum equation with losses [25]. Taking the modulation into account
under the same conditions 𝐾 < 0 (𝜖𝐼 > 0 and 𝑢𝐼 < 0), the pendulum experiences
the additional decay in intervals

𝜃 ∈ [0 + 2𝜋𝑚; 𝜋2 + 2𝜋𝑚] , 𝜃 ∈ [
3𝜋
2 + 2𝜋𝑚; 2𝜋 + 2𝜋𝑚]

responsible for the formation of the leading and trailing edges of SPP pulse (see Fig.
2c), whereas in the interval

𝜃 ∈ [
𝜋
2 + 2𝜋𝑚; 3𝜋2 + 2𝜋𝑚]

when the central part of SPP pulse is formed, the enhancement of pendulum oscilla-
tions is observed; 𝑚 = 0, 1, 2....

In other words, the absorbing dielectric host-medium coherently preserves a part
of the QD energy during the formation of the leading edge of the pulse and then
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coherently returns this energy to SPP pulse during formation of the pulse peak. As a
result, taking into account the compensation of the spontaneous relaxation rate of QDs
(Γ𝜖 = 0) and nonlinear terms with 𝑢𝐼 in (5), the increase in the peak pulse intensity is
observedwith respect to the case when the response of the host-medium is neglected
(see Figs. 2a,b).

The initial conditions in simulation of (10) are chosen equal to 𝜃0 = 1/√𝑁𝑎 for the
initial oscillation angle and

𝜐𝜃 =
𝜕𝜃
𝜕𝑡 |𝑡=0 =

2
cosh(ln

𝜃0
4 )

for the initial velocity of the pendulum.

Equation (10) is a particular case of the Lienard equation and its approximate analytic
solution can be expressed in terms of elliptic integrals of the first kind. The numeri-
cal solution for the Rabi frequency of SPP pulse field obtained from (10) completely
coincides with the results of the direct numerical simulation of system (5)–(6) under
conditions of the suppression of spontaneous relaxation in QDs for the chosen values
𝑛𝑅 = 1.6 and 𝑛𝐼 = 1.23 (𝐾 = −0.0147) (see Fig. 2a).

4. Conclusions

We have proposed efficient method for the formation of short SPP pulses at the
dielectric-metal interface containing QDs. The general conditions for selecting param-
eters of QDs and a dielectric host-medium are determined which provide the maximal
collective energy transfer from a QD ensemble to SPP modes dominating over the
radiative relaxation of individual chromophores. To tune the system parameters to the
plasmon resonance more accurately, it is useful to employ experimental absorption
and fluorescence spectra of giant ensembles of emitters [26, 27] in different host
medium. Themodels presented in the paper can be useful for practical implementation
of multiqubits entanglements [28] and quantum computations in macroscopic and
mesoscopic [29] systems. However, for the realization of the external control in
such systems one additionally requires the use of multiwave schemes [30, 31] of
nonlinear coherent interaction by analogy with optics [32, 33]. Further development
of our research is related to the investigation of collective spin effects based on the
photon echo [34] in plasmonic structures, as well as the possibilities of control such
effects [35].
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