Conference Paper

Sodium-23 Magnetic Resonance Imaging

Sadykhov E.G., Gulyaev M.V., Anisimov N.V., Pirogov Yu.A., and Belyaev V.N.

1National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, Moscow, 115409, Russia
2Lomonosov Moscow State University, Moscow, Russia

Abstract

23Na MRI provides additional biochemical information to 1H MRI in terms of cell integrity and tissue viability. We aimed at determining the sensitivity of 23Na MRS, MRI and MR relaxometry methods available on 7T MR scanner Bruker Biospec 70/30 USR and developing of an optimal MRI protocol for small animal 23Na in vivo visualization. The outcomes include 23Na MR spectra, 23Na MR images with SNRs, and T_1 and T_2 values of 23Na. It is shown that single-pulse 23Na MR spectroscopy can discriminate different 23Na concentrations, and 3D FLASH pulse sequence adapted for 23Na data acquisition may provide the acceptable quality images.

Keywords: Sodium MRI, Sodium MRS, 3D FLASH, MR relaxometry

1. Introduction

Sodium is a vital component in the human organism. It is an important electrolyte that helps maintain the homeostasis of the organism through the osmo- and pH-regulation [1]. Sodium is a crucial element in cell physiology, which regulates the transmembrane electrochemical gradient and so participates in heart activity, the transmission of nerve impulses and muscle contractions. Sodium concentration (intracellular 10–15 mM and extracellular 140–150 mM) is very sensitive to changes in tissue metabolic state and to disruption of cell membrane integrity. In many pathological states, the sodium concentration increase is detected.

The sodium flux in and out of cells may occur by different mechanisms: voltage- and ligand-gated Na$^+$ channels, Na$^+$/Ca$^{2+}$ exchangers, Na$^+$/H$^+$ exchangers, Na$^+$/HCO$_3^-$ cotransporters, Na$^+$/K$^+$/2Cl$^-$ cotransporters, Na$^+$/Mg$^+$ exchangers and Na$^+$/K$^+$-ATPase [2].

23Na nucleus has spin 3/2 and 100% natural abundance, therefore this nucleus can be detected by nuclear magnetic resonance (NMR) methods [3].

Sodium magnetic resonance imaging (MRI) is a quantitative in vivo method allowing to estimate cell integrity and tissue viability. Examples of clinical application include
cerebral stroke, brain and breast tumors, cardiac infarction, Alzheimer’s disease, multiple sclerosis, hypertension, osteoarthritis, renal failure. The use of 23Na MRI in conjunction with 1H MR techniques will help the diagnosis, prognosis of diseases and treatment outcomes.

The problem considered by our group in this work was to determine the sensitivity of 23Na MR spectroscopy (MRS), MRI methods to different 23Na concentrations and make an optimal protocol of 23Na MR study for small animals (rat, mouse) using 3D FLASH (fast low angle shot) pulse sequence on 7T MR scanner Bruker Biospec 70/30 USR.

We also aimed at differentiating sample states based on 23Na T_1 and T_2 relaxometry. The relaxometry parameters may serve as endogeneous markers of underlying physiology. For instance, E. Staroswiecki et al. [4] showed an increase in the 23Na T_2 within tumors in the human breast at 3 T. Another example is the work made by M. Lupu et al. at 4.7 T [5] where 23Na T_2- relaxometry was performed on mouse liver, revealing differences between normal and Hepatocellular Carcinoma bearing liver. C. Thomas et al. [6] carried out cisplatin treatment monitoring by 23Na MRI relaxometry at 4.7 T in colorectal tumors implanted on mice.

2. Materials and methods

The experiment was carried out on 7T MR scanner Bruker Biospec 70/30 USR with maximum gradient strength 105 mT/m using ParaVision 5.0 software. Protocol testing was implemented in vitro on the phantoms (plastic vials with the volume 14 ml) which comprised different concentrations of NaCl and gelatine (Table 1). Gelatine was chosen as gel forming substance in order to mimic biological semi-solid tissues. Distilled water was used as a solvent in all cases.

<table>
<thead>
<tr>
<th>Phantoms</th>
<th>Integral ratio</th>
<th>Height ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05, 0.1, 0.14, 5.3 M NaCl</td>
<td>1:2.1:2.8:95</td>
<td>1:2.2:8:92</td>
</tr>
<tr>
<td>0.05, 0.1, 0.14 M NaCl + 1% gelatine</td>
<td>1:2:13:2</td>
<td>1:1:6:3:1</td>
</tr>
<tr>
<td>0.05, 0.1, 0.14 M NaCl + 2% gelatine</td>
<td>1:1:9:2:5</td>
<td>1:1:7:2:3</td>
</tr>
<tr>
<td>0.05, 0.1, 0.14, 5.3 M NaCl + 4% gelatine</td>
<td>1:2:1:2:8:114:2</td>
<td>1:2:1:2:6:98:2</td>
</tr>
</tbody>
</table>

The protocol of study comprised two parts: proton and sodium. The first one consisted of automatic shimming (global) and localizing. These 2 steps were realized with
1H Bruker transceiver volume radiofrequency (RF) coil. The 23Na part included determination of 3D FLASH optimal parameters. Sodium nuclei excitation and signal reception were implemented by means of a RF surface coil with 2 cm internal diameter. The 23Na coil is a modified proprietary transceiver coil (Figure 1) originally tuned to the 13C frequency. The coil was placed too close on the phantoms.

![Figure 1: View of the 23Na surface coil.](image)

The 23Na resonance frequency ≈ 79.57 MHz was defined by recording 23Na MR spectra in TopSpin 2.0 software and set in ParaVision 5.0 software for obtaining 23Na MR images. The free induction decay (FID) signal for 23Na MRS was acquired with a 90° single block pulse of duration 90 μs and power ≈ 1.6 W. The other parameters were: repetition time (TR) = 350 ms, number of scans (NS) = 2, size of FID = 2048 points, zero filling factor = 2, sweep width (SW) = 5 kHz, acquisition time (TA) = 0.7 s. RF pulse calibration was implemented by changing the pulse duration gradually until the 23Na peak went through a null indicating a 180° pulse. The signal-to-noise ratios (SNRs) of 23Na spectra were calculated using the algorithm embedded in TopSpin 2.0 software.

We used RARE-VTR (rapid acquisition with relaxation enhancement with variable repetition time) and MSME (multi slice multi echo) pulse sequences to measure 23Na T_1 and T_2 values respectively. T_1-relaxometry was carried out with 16 values of TR (from 10 to 350 ms), TE = 6 ms, NS was taken 4 for saturated NaCl, 16 for 0.14 M, 32 for 0.1 and 0.05 M NaCl. T_2-relaxometry was conducted with 25 values of TE (from minimum 5.74 to 143.5 ms), TR = 350 ms, NS = 4 for saturated NaCl, 32 for 0.14 M, 64 for 0.1 M and 128 for 0.05 M NaCl. Both types of measurement comprised block excitation 90° and refocusing 180° RF pulses of the same duration (90 μs) and different power (1.6 and 6.3 W respectively).

23Na MR images were acquired using 3D FLASH pulse sequence with the optimal parameters. The quality of obtained 23Na images was estimated in terms of SNR using ImageJ 1.51j8 software [7]. According to the formula (A11) in [8], SNR was defined as $0.66 \cdot S/N$ where S is a mean value in the region-of-interest (ROI) defined in the upper part of the axial slice of the phantom and N is a standard deviation in the ROI defined outside the phantom.
3. Results

The 23Na MR spectra of the prepared phantoms were obtained. 23Na MRS was conducted with NS = 2 enough to get high SNR. In case of scanning the phantom with minimum NaCl concentration (50 mM), the SNR of the spectrum was ≈ 80. It allowed to acquire 23Na spectra quite fast (TA = 0.7 s). The calculated linewidth of the obtained 23Na peaks was in the range from 35 to 45 Hz (line broadening was taken 10 Hz), what validated the good shimming. In order to check the capability to recognize changes in 23Na concentration of the objects scanned, the integral and height ratios for 23Na peaks were calculated (Table 1). It can be seen that 23Na MRS is able to differentiate 23Na concentrations. Examples of 23Na MRS are shown in Figure 2.

![Figure 2: 23Na MR spectra of 0.05 M (red), 0.1 M (black) and 0.14 M (blue) NaCl solutions; the spectra are shifted for clarity.](image)

The optimization of main scanning parameters was made taking into account the size of the 23Na surface coil and the opportunities of 3D FLASH method. In order to achieve high SNR, the field of view (FOV) was set larger than coil dimensions. The matrix size was selected to achieve good spatial resolution and acceptable acquisition time (<25 min for minimum NaCl concentration). The large SW (70 kHz) and short RF pulse were taken to set small TE to attain high intensity 23Na MR signal. To achieve the good quality of 23Na images the RF pulse was chosen non-rectangular. The pulse power was determined based on pulse duration and FA value. For the purpose of finding the optimal TR, the 23Na MRI of the saturated NaCl phantom was performed using different TRs (160, 80, 40, 20 and 10 ms), and the corresponding SNRs were calculated (Table 2). Based on the TR and T_1 values, the FA was taken equal to Ernst angle [9].
The following parameters were chosen for 3D FLASH 23Na MRI as optimum: TR/TE = 10/3.8 ms, FA = 30°, FOV = 6×4×4 cm, MTX = 64×64×8, Gaussian pulse of duration 270 μs and power \approx100 mW, SW = 70 kHz. In order to obtain acceptable quality 23Na MR images (SNR≥5), the parameter TA was different for each sample regardless of the gelatine concentration: 1 min 22 s for 5.3 M NaCl, 5 min 28 s for 0.14 M NaCl, 10 min 55 s for 0.1 M NaCl and 21 min 51 s for 0.05 M NaCl. The MR scanning was performed in the axial projection.

The SNRs for 23Na images (examples are shown in Figure 3) are given in the Table 3. It is seen from Table 3 that even for small NaCl concentrations the achieved SNR≥5. The highest 23Na image signal intensity is observed in the upper part of phantoms since the surface coil produces the non-uniform RF magnetic field.

To determine the sensitivity of 23Na 3D FLASH MRI method with optimized parameters, the mass of 23Na in each voxel for the minimum NaCl concentration was calculated. The 0.05 M 23Na concentration is equivalent to \approx3.4 μg of 23Na per used voxel size of 2.93 mm³.
The results for T_1- and T_2-relaxometry are shown in the Table 3. Considering the samples No. 1–4 and 11–14 from the Table 3, it’s noticeable that the T_1 and T_2 values in case of saturated NaCl solution are less than for more dilute NaCl solutions. Addition of 4% gelatine to saturated NaCl results in reduction of T_1 and T_2. The decrease of T_1 is observed for small NaCl concentrations when augmenting the gelatine concentration but there is no sustained change in T_2. The measurements of T_2 for 50 mM NaCl phantoms weren’t reliable because of the low SNR (<3) therefore corresponding results aren’t specified.

4. Discussion

It can be seen from Table 1 that integral ratios are in good concordance with NaCl concentration ratio which is 1:2:2.8:106, as expected. This result shows the good sensitivity of 23Na MRS to discriminate different 23Na concentrations.

Based on the acquired 23Na images we can claim that the used 3D FLASH method is sensitive to minimum Na$^+$ concentration (50 mM) considered. According to [10], the
average tissue sodium concentration measured in brain is ≈ 45 mM what determines the choice of minimum NaCl concentration in our study.

Our 23Na T_1- and T_2-relaxometry measurements showed the opportunity to discriminate liquid and solid states of the objects scanned: the more solid the sample, the lower T_1 and T_2. However our measurements didn’t reveal any regularity when analyzing T_1 and T_2 for the phantoms with the biological Na$^+$ concentrations (0.14, 0.1, 0.05 M) within the same gelatine concentration. This may be a problem when differentiating 23Na concentrations in in vivo 23Na MR experiments.

Furthermore, it is worth noting that 23Na nucleus has the quadrupole moment, therefore 23Na experiences a biexponential T_2 relaxation in biological tissues. It is known that a short T_2 component $T_{2,\text{fast}} > 3$ ms gives 60% of the MR signal, while a long T_2 component $T_{2,\text{slow}} > 20$ ms corresponds to 40% of the signal [11]. Since the minimum TE we used in T_2-relaxometry was quite big (5.74 ms), we can suppose that we measured only long T_2 component. The use of the advanced technique such as ultrashort echo time (UTE) pulse sequence can allow to measure short T_2 component as well if there are no technical constraints of MR hardware.

5. Conclusion

We conducted the MR phantom experiment to show the capability to detect different 23Na concentrations within the range of biological values. Our study demonstrated the high sensitivity of single-pulse 23Na MRS on 7T MR scanner Bruker Biospec 70/30 USR and the ability of 23Na MR relaxometry to distinguish the samples with different density that can be useful in differentiating normal and injured tissues. We optimized the conventional MR scanning 3D FLASH method for 23Na signal detection at 7 T and developed the MRI protocol for small animal 23Na in vivo visualization.

Acknowledgements

This work was carried out in the Centre for Collective Usage “Biospectrotomography” supported by the Faculty of Fundamental Medicine of Lomonosov Moscow State University, Moscow, Russia.
References

