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Abstract

Immune checkpoints (ICPs) are essential regulators of the immune system, ensuring a delicate
balance between self-tolerance and autoimmune responses. ICP therapy is a rapidly growing
cancer treatment strategy that inhibits the interaction between ICPs and their ligands. This
biological interaction increases the ability of the immune system in combating cancer. However,
in some cases, the use of these agents may lead to immune hyperactivity and, subsequently,
autoimmune diseases. Graves’ disease (GD), thyroid eye disease (TED), and orbital myopathy
are complex autoimmune disorders characterized by the production of autoantibodies. The
emergence of these treatment-related adverse events underscore the critical need for a deeper
understanding of the immune-checkpoint axis in autoimmune diseases. In this review article, we
provide a comprehensive survey of the biological mechanisms of ICPs that are most frequently
targeted in cancer therapy, including CTLA-4, PD-1, PDL-1, and LAG3. Furthermore, we investigate
the latest scientific findings on the adverse events associated with the inhibition of these ICPs.
This paper will particularly focus on the potential risks these complications pose to ocular and
orbital tissues, which are a concern in the context of cancer treatment.
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INTRODUCTION

Immune checkpoints (ICPs) are natural regulatory
mechanisms that dampen the immune system’s
response. Physiologically, they maintain a delicate
balance between proinflammatory and anti-
inflammatory pathways, thereby preventing chronic
inflammation.[1, 2] Cancer cells exploit ICPs to evade
the immune system’s surveillance mechanisms,
hence enabling uncontrolled proliferation and
metastasis.[3, 4] Immune checkpoint inhibitors
(ICIs) represent a class of cancer immunotherapy
that targets and disables specific ICPs, allowing
the immune system to unleash its full potential
against cancer cells.[5] Multiple ICPs and their
corresponding ligands have been identified as
potential targets in the fight against cancer,
yielding substantial advancements in treatment
outcomes and sustained remissions.[3, 6–8] While
ICIs have revolutionized cancer care by enhancing
patient survival, they also carry a risk of immune-
related adverse events (IRAEs). These autoimmune
reactions can occur in any tissue or organ,
highlighting the need for careful monitoring and
management to mitigate their impact.[9, 10] The
timing and duration of IRAEs following the use
of ICIs are not yet fully understood. The onset of
IRAEs can be at any time, making it challenging
to anticipate their development. Moreover, the
persistence of IRAEs can vary significantly, ranging
from rapid resolution after discontinuation of ICIs
to prolonged or even chronic conditions that can
last for months or longer.[11–14]

IRAEs can be classified into different categories:
endocrine, rheumatological, gastrointestinal,
pulmonary, cardiovascular, and neurological.[5]
Thyroid dysfunction is considered as one of the
most common endocrine IRAEs which may result
in clinical symptoms within weeks to months after
ICI therapy.[15–17] Several studies have revealed
a significant association between ICIs and an
elevated risk of developing thyroid dysfunction
and orbital inflammatory conditions.[1, 2] Phase III
clinical trials report up to 20% thyroid dysfunction
after targeting these cell surface proteins.[18, 19]
These receptors bind to their respective ligands,
transmitting inhibitory signals that ultimately
influence the proliferation and differentiation of
immune cells.[20] Figure 1 illustrates the interaction
between these molecules and their corresponding
ligands.

In this comprehensive review, we delve into
the biological mechanisms underlying the most
frequently targeted ICPs in cancer therapy,
including CTLA-4, PD-1, PDL-1, and LAG3. We also
examine the latest scientific discoveries on the
adverse events associated with the inhibition of
these immune modulators with a special emphasis
on the potential risks they pose to ocular and
orbital tissues. This is particularly important in the
context of cancer treatment, where the potential
impact on these sensitive areas is a growing
concern.

Overview of the Role of Immune Checkpoints
(ICPs)

Cytotoxic T lymphocyte antigen 4 (CTLA-4)

Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a
member of the immunoglobulin family and consists
of 223-amino-acids. This immune modulator is
mainly expressed on activated lymphocytes.[21, 22]
The negative role of CTLA-4 on T-cell proliferation
was confirmed when some researchers observed
the rapid development of lymphoproliferative
disease with multi-organ lymphocytic infiltration
and tissue destruction in CTLA-4-deficient mice.
These mice developed severe myocarditis and
pancreatitis, and they died by three to four weeks
of age.[23] Mutation studies on mice have shown
that CTLA-4 strongly competes with the co-
stimulatory factor CD28 for binding to CD80 and
CD86 at immunological synapses. CTLA-4 inhibits
the proliferation of T lymphocytes and dampens
their cytokine production through binding to
CD80 and CD86.[24–26] It should be noted that
although CTLA-4 plays a significant role in immune
regulation, alternative processes ensure immune
tolerance when CTLA-4 is absent.[27–29]

Programmed cell death protein 1 (PD-1)

Programmed cell death protein 1 (PD-1) is a
transmembrane protein composed of 288 amino
acids with a critical role in regulating the immune
system.[30] This immune modulator is expressed
on B-cells, T-cells, as well as NK cells, and it
is structurally similar to CTLA-4. PD-1 maintains
immune hemostasis by binding to two ligands:
programmed cell death ligand 1 (PDL-1) and
programmed cell death ligand 2 (PDL-2). PDL-1
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Figure 1. A diagram illustrating the interaction between three immune checkpoint molecules (CTLA-4, LAG3, and PD-1) and their
corresponding ligands. The diagram features a T-cell to exemplify an immune cell that carries checkpoint proteins. It also highlights
the binding of CTLA-4 to CD80 and CD86; LAG3 to HLA Class II, Galectin-3, and FGL-1; and PD-1 to PDL-1 and PDL-2.

is a member of the B7 family and, by binding
to PD-1, inhibits lymphocyte proliferation, cytokine
production, and CD28 co-stimulation. This factor
has shown to be upregulated on peripheral
blood mononuclear cells by interferon-gamma
stimulation. Additionally, it could be expressed by
non-lymphoid tissues such as those making up the
heart and lung. PD-L1 expression on non-lymphoid
tissues and its potential interaction with PD-1 may
subsequently determine the extent of immune
responses at sites of inflammation.[30] PDL-2 is a
protein that can bind to the PD-1 receptor on T-cells.
The role of PDL-2 in regulating the immune system
is not well-understood. Its expression depends on
Toll-like receptor 4 and STAT1 (signal transducer
and activator of transcription 1) factors. PDL-2 is not
expressed on inflammatory macrophages but can
be induced on them by interleukin 4 stimulation.
The level of PDL-2 expression is mediated by
both interleukin 4 receptor alpha and STAT6
factors.[31, 32]

Lymphocyte-activation gene 3 (LAG3)

Lymphocyte-activation gene 3 (LAG3), a member
of the immunoglobulin superfamily, is initially
expressed at undetectable levels in quiescent
peripheral blood lymphocytes. However, upon
activation, its expression is upregulated in both
T-cells and natural killer cells. The ICP molecule
LAG3 is also found on activated B cells, albeit

at a lower level.[33] This discovery suggests that
LAG3 may play a distinct role in regulating B cell
function in addition to its established role in T-cell
regulation.[33–35] Research findings demonstrate
that interactions between LAG3 and HLA Class II
downregulate CD4 T-cell activity.[36]

Immune Checkpoint Inhibition (ICI) and
Immune-related Adverse Events (IRAEs)

Over the past decade, ICIs have emerged as a
groundbreaking treatment approach for various
types of cancer, bringing renewed optimism and
improved outcomes for patients. The breakthrough
began with the FDA approval of ipilimumab in 2011
as the first instance of ICI in cancer therapy.
Cancer cells exploit ICPs to avoid detection
and attack by the immune system. Neoplastic
cells evade immune surveillance by exhausting
cytotoxic T-cells. This exhaustion results from
prolonged exposure to tumor antigens, which
ultimately impairs T-cell functionality and triggers
the upregulation of ICP molecules.[45, 46] The
CTLA-4 inhibitor; ipilimumab; PD-1 inhibitors
nivolumab, pembrolizumab, and cemiplimab;
and PD-L1 inhibitors atezolizumab, avelumab,
and durvalumab are recent FDA-approved
antibodies that have been tested either alone or
in combination in different trials. Recently, several
new ICPs such as BTLA, VISTA, TIM-3, LAG3, and
CD47 and co-stimulatory molecules such as CD137,
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OX40, and GITR have been identified as new
immune treatment targets for different cancers.[47]
By blocking these checkpoints, ICIs enable the
immune system to recognize and destroy cancer
cells more effectively, leading to improved survival
rates for patients with different types of cancer.[48]
The effectiveness of ICIs in managing multiple
types of cancer and improving survival rates has
led to their widespread use in treatment.[49, 50]
However, while these treatments have shown
positive results, they have also led to uncontrolled
immune-related responses that affect various
organs. This has become a growing concern in
the administration of ICIs because they can cause
inflammation and damage healthy tissues.[51–53]
According to research, a substantial number of
patients treated with immunotherapy experience
severe adverse events, with frequencies of 14%
for anti-PD-L1 inhibitors, 34% for anti-CTLA-4
treatment, and an alarming 55% for combination
therapy involving ICIs.[54] IRAEs arise when the
immune system mistakenly attacks healthy cells
and tissues, resulting in significant inflammation
and damage. These events range from mild
symptoms such as fatigue and fever to more
severe manifestations including colitis, hepatitis,
and pneumonitis. In some cases, they can be
life-threatening and necessitate hospitalization or
discontinuation of treatment.[9, 12, 55]

Although nivolumab and pembrolizumab have
shown to be effective in treating certain types of
cancer, both drugs also carry the risk of potential
adverse reactions, particularly thyroiditis, thyroid
eye disease (TED), and orbital inflammation.[56–67]

Given the high rate of severe adverse events
associated with immunotherapy, it is crucial to
better understand the underlying mechanisms
driving these reactions and implement rigorous
monitoring strategies to ensure patient safety
throughout the treatment process. In the following
section, we address the orbital and thyroid-
specific adverse events associated with ICIs,
with a particular emphasis on the development
of thyroid autoimmune dysfunction and orbital-
related inflammatory responses [Table 1].

Immune Checkpoint Inhibition (ICI) and
Thyroid Immune-related Adverse Events
(IRAEs)

Side effects that occur in the thyroid gland as
a result of treatment with ICIs are reffered to as

thyroid IRAEs. Recent research has demonstrated
the effectiveness of combining anti-CTLA-4 and
anti-PDL-1 treatments for advanced cancers. It is
crucial to recognize that, with an increasing number
of patients receiving these treatments, there has
been a growing incidence of autoimmune-related
endocrine disorders. Reports on ICIs-associated
thyroid and orbital inflammations have been
summarized in Table 1.

Given that reports show thyroid IRAEs frequently
occur after therapy with ICIs, it is important to
investigate the molecular mechanisms that are
responsible for such complications to identify the
patients who are at risk for thyroid IRAEs.

Immune Checkpoint Inhibition (ICI) and
Graves’ Disease (GD)

Graves’ disease (GD) is a chronic autoimmune
disorder characterized by the production of
antibodies that target the thyroid gland, orbital soft
tissues, and skin, leading to thyroid dysfunction,
distinctive orbital and skin manifestations,
and a range of associated symptoms.[68, 69]
Thyroid-stimulating hormone-binding inhibitory
immunoglobulins (TBII) are autoantibodies which
act against the thyroid-stimulating hormone
receptor in response to hyperthyroidism and lead
to the pathogenesis observed in GD.[70]

Researchers have identified genetic variations
in the CTLA-4 gene that are associated with
an increased activity of T-cells, and can lead to
the development of autoimmune disorders such
as GD and autoimmune hypothyroidism. They
found a correlation between susceptibility to these
diseases and a 6.1-kb region of the CTLA-4 gene
that results in lower levels of messenger RNA
(mRNA) for the alternative soluble splice form
of the CTLA-4 protein. The lower levels of this
specific form of CTLA-4 mRNA may contribute to
increased susceptibility to GD and autoimmune
hypothyroidism.[71] A study identified CTLA-4 as a
potential factor contributing to the development
of GD in the Chinese population. The authors
investigated the association between two CTLA-4
polymorphisms (+49A/G and CT60) and GD as well
as TED, also referred as Graves’ orbitopathy. The
meta-analysis revealed that both polymorphisms
were linked to GD, but no significant association
was found between these polymorphisms and
TED in patients with GD. It was suggested that
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the +49A-CT60G haplotype may increase the risk
of TED in patients with GD, with an odds ratio
(OR) of 1.63 and a 95% confidence interval (CI)
of 1.00–2.64; nevertheless, this association was
marginally significant (P = 0.05).[72] A team of
researchers attempted to establish a correlation
between variations in the CTLA-4 gene and the
likelihood of developing GD. A total of 329 patients
with GD (240 of whomwere positive for TBII and 89
were negative for TBII) and 378 healthy individuals
(as controls) were studied for genetic variations in
the HLA-A, –DPB1, and CTLA4 genes. In this study,
individuals with GD who tested positive for TBII
had a higher incidence of TED compared with the
controls (97.1% vs 91.8%; OR = 2.97, 95% CI = 1.29–
6.87, P = 0.008). However, there were no significant
differences in the TED incidence between TBII-
negative patients with GD and the controls (94.4%
vs 91.8%; OR = 1.50, 95% CI = 0.57–3.98, P
= 0.41). This study reported on an association
between the CTLA-4 gene and susceptibility to
TBII-positive GD.[73] A 51-year-old woman with
lung melanoma and skin tumors was treated
with ipilimumab. After just two treatments, she
began to exhibit GD symptoms, including severe
eye bulging, double vision, and dry eyes, which
were caused by inflammation of the eye muscles.
Further investigation revealed that the activation
and proliferation of T-cells following therapy with
this ICI were linked to the production of cytokines,
highlighting the importance of the CTLA-4 receptor
in the development of this autoimmune disorder.[74]

In a case report, it was observed that a 67-
year-old euthyroid male patient with metastatic
melanoma developed signs of hyperthyroidism
after two of four scheduled cycles of therapy
with ipilimumab. Upon diagnosis, the patient
was found to have developed GD. As a result,
the anti-CTLA-4 therapy was discontinued
and his thyroid function was restored through
treatment with methimazole.[75] In a separate
study, a 55-year-old man with metastatic skin
melanoma was treated with a combination of
temozolomide, rucaparib, and tremelimumab, an
anti-CTLA-4 agent. Eight years into treatment,
he developed GD, highlighting the potential
risk of autoimmune thyroiditis when CTLA-4 is
targeted through therapy. This case emphasizes
the significance of concurrent administration

of antithyroid medication alongside CTLA-
4 suppression therapy to mitigate the risk of
developing autoimmune disorders.[76] A 51-year-
old man who was under treatment with nivolumab
for metastatic non-small cell lung cancer presented
palpitations, heat intolerance, and insomnia after
his fourth infusion. Although being euthyroid
before treatment with nivolumab, the patient
presented symptomatic thyrotoxicosis two months
after therapy. Persistence of hyperthyroidism,
hypervascular pattern at thyroid ultrasound, and
high uptake at thyroid scintigraphy confirmed the
development of GD. In order to restore the thyroid
function, he underwent therapy with methimazole
(20 mg/day) and euthyroidism was restored after
60 days of treatment.[77]

Another study reported a 66-year-old individual
with HER2-positive stomach cancer. Due to liver
metastasis with a portal tumor thrombus, he
received the first line of therapy with eight cycles
of tegafur/gimeracil/oteracil (S-1), cisplatin, and
trastuzumab. Because of disease progression,
he underwent the second line of therapy and
received paclitaxel and ramucirumab. After
10 cycles, the disease progressed again, and
nivolumab was administerd this time. Thyroid-
stimulating hormone receptor antibody (TRAb)
and thyroid-stimulating antibody (TSAb) tests
were negative before the first dose of nivolumab,
but became positive after starting the therapy.
TSH suppression and thyrotoxicosis occurred
before the second and third administrations,
respectively. As TRAb and TSAb were
positive before the second administration,
the onset of GD was confirmed after receiving
nivolumab.[78]

Immune Checkpoint Inhibition (ICI) and
Thyroid Eye Disease (TED)

Inflammation can arise in the orbital and
surrounding orbital tissues and pose a significant
risk of serious complications.[38, 79] Autoimmune
orbital inflammatory diseases are a group of
disorders that target the eye and its surrounding
tissues. They can lead to loss of vision and other
ocular symptoms such as pain, redness, and
swelling. The exact cause of orbital inflammation is
not fully understood, but it is believed to be related
to an autoimmune response.
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Table 1. Auto- immune Adverse Events in Trials Using Immune Checkpoint Inhibitors.

Agent Molecular target Tumor Dosage Auto-immune AE Study

Ipilimumab CTLA-4 Stage III or IV melanoma 3 mg/kg Grade III or IV IrAEs Hodi 2010 [55]

Stage IV melanoma 10 mg/kg Graves’ ophthalmopathy Min 2011 [58]

Lung malignant melanoma N/A T3 depression Graves’ disease Graves’
ophthalmopathy

Borodic 2011 [74]

Metastatic melanoma 3 or 10 mg/kg Hypothyroidism-Thyroiditis Ryder 2014 [61]

Malignant melanoma with liver
and lung metastases

3 mg/kg Thyroid-like ophthalmopathy McElnea 2014 [99]

Advanced melanoma 3 mg/kg Grade III-V TRAEs Robert 2015 [57]

Metastatic Melanoma 3 mg/kg Hyperthyroidism- Graves’ disease Azmat 2016 [75]

Ipilimumab+
Bevacizumab

CTLA-4+ VEGF Advanced melanoma 10mg/kg+7.5mg/kg Autoimmune thyroiditis Min 2011 [58]

Tremelimumab CTLA-4 Skin metastatic melanoma- lung
metastases

N/A Hyperthyroidism- Graves’ disease Gan 2017 [76]

Metastatic cutaneous
melanoma

10mg/kg Hyperthyroidism Graves’ disease
Graves orbitopathy

Sagiv 2019 [13]

BMS-936558 PD-1 Non-small-cell lung cancer,
melanoma, or renal-cell cancer

1, 3, or 10 mg/kg Grade III or IV TRAEs Hyper and
Hypothyroidism

Topalian 2012 [59]

MDX-11-5 PD-1 Selected Advanced or
Recurrent Solid Tumors

10 mg Grade III or IV immune-related adverse
events Hypothyroidism Autoimmune
thyroiditis Dry eye Hypersensitivity

Brahmer 2012 [65]

Atezolizumab PDL-1 Metastatic Renal Cell
Carcinoma

1-20 mg/kg Grade I-III IrAEs Hypothyroidism McDermott 2016 [66]

Nivolumab PD-1 Advanced melanoma 1, 3, or 10 mg/kg Grade III-IV TRAEs Hyper and
Hypothyroidism

Topalian 2014 [60]

Clear-cell mRCC 2mg/kg Grade III-IV TRAEs Motzer 2015 [56]

Metastatic melanoma without a
BRAF mutation

3 mg/kg Grade III-IV TRAEs Hyper and
Hypothyroidism

Robert 2015 [62]

Melanoma 2 mg/kg Myasthenia gravis Suzuki 2017 [107]

Non-Small Cell Lung Cancer 3 mg/kg Myasthenia gravis Suzuki 2017 [107]

Metastatic renal cell carcinoma 3 mg/kg Thyroiditis- Graves’ disease- Graves
orbitopathy

Sagiv 2019 [13]

Metastatic non-small cell lung
cancer

3 mg/kg Autoimmune hyperthyroidism Graves’
disease

Brancatella 2019 [77]

Stage IVb gastric cancer 240 mg Thyrotoxicosis Graves’ disease Yamada 2020 [78]

Nivolumab+
Ipilimumab

PD-1+ CTLA-4 Stage III or IV metastatic
melanoma

1 mg/kg+ 3mg/kg Grade III or IV TRAEs Hyper and
Hypothyroidism

Larkin 2015 [63]

Hepatocellular Bladder
urothelial carcinoma Lymph
nodes and bone metastasis

3mg/kg+ 1mg/kg Bilateral Graves orbitopathy Orbital
inflammation

Sagiv 2019 [13]

Cemiplimab PD-1 Squamous cell carcinoma 350 mg Myasthenia gravis Myocarditis-Myositis Jeyakumar 2020 [114]

Pembrolizumab Ipilimumab-refractory Advanced
melanoma

2mg/kg Grade III or IV IrAEs Robert 2014 [57]

Advanced melanoma 10 mg/kg Grade III or IV TRAEs Hyper and
Hypothyroidism

Robert 2015 [10]

Advanced non-small-cell- lung
cancer

10 mg/kg Grade III-V TRAEs Hyper and
Hypothyroidism Infusion-related

reactions Pneumonitis

Garon 2015 [64]

Advanced urinary cancer N/A Ocular myasthenia gravis Kamo 2019 [110]
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Table 1. Continued.

Agent Molecular target Tumor Dosage Auto-immune AE Study

Lung cancer lymph nodes and
brain metastasis

N/A Ocular myasthenia gravis Kamo 2019 [110]

Metastatic non-small cell lung
cancer

N/A Idiopathic orbital inflammatory
syndrome

Michels 2019 [112]

Acral lentiginous melanoma N/A Ocular myasthenia gravis Liu 2019 [111]

Malignant mesothelioma N/A Ocular myasthenia gravis Lorenzo 2020 [113]

N/A N/A Ocular myositis Garibaldi 2020 [115]

High-grade urothelial carcinoma 200 mg Myasthenia gravis-like disorder-
ocular myositis

Tian 2021 [116]

Gastric adenocarcinoma 2 mg/kg Ocular myasthenia gravis Garcez 2022 [118]

AE, Adverse event; IrAEs, Immune-related adverse events; N/A, Not applicable; TRAEs, Treatment related adverse events.

This response is mediated by macrophages
and infiltrating T-cells, which play major roles in
initiating and augmenting inflammatory processes
by releasing pro-inflammatory cytokines such as IL-
1, IL-5, TNF-𝛼, and IFN-𝛾 .[79–81] Recent studies have
suggested a possible association between ICIs
and orbital inflammatory conditions, also known as
ophthalmic IRAEs.[82]

A recent retrospective study investigated the
incidence of IRAEs after therapy with ICIs in a
Chinese cohort of 962 patients and reported
a frequency of 23.5% for IRAEs and 1.1% for
OIRAEs.[83]

Both CTLA-4 and PD-L1 ICPs have been
associated with inflammatory or autoimmune
reactions in the orbit.[84] TED is the most
frequent extra-thyroidal manifestation associated
with GD.[85–88] Up to 50% of patients with GD
develop autoimmunity in the orbit.[89, 90] It occurs
most commonly in adults but may also affect
children.[91] Symptoms of TED include ocular
pain, excessive tearing, photophobia, visual
disturbances, eyelid retraction, exophthalmos,
restrictive extraocular myopathy, and optic nerve
dysfunction.[92] TED may be associated with
decreased vision secondary to dysthyroid optic
neuropathy or keratopathy.[93–96] The significant
impact of TED on patients’ quality of life has
been well documented, making it a critical issue
that warrants attention and management.[97–99]
According to the European Group on Graves’
Orbitopathy (EUGOGO), three distinct categories
exist for this complication: mild, moderate to
severe, and sight-threatening.[85, 92] In cases

where ophthalmic pathological conditions arise,
approximately 80–90% of patients will exhibit
hyperthyroidism, yet hypothyroidism may also be
present. TED is typically characterized by two
distinct phases: an active inflammatory phase and
a static phase.[85, 93] Notably, TED often presents
as a bilateral condition, but it can occasionally
appear as unilateral or asymmetric.[100, 101]

It has been shown that the CTLA-4 gene
is associated with the presence of thyroid
antibodies (TAbs) and the development of TED.[90]
A study analyzed 529 cases and identified
a correlation between a single-nucleotide
polymorphism (SNP) at position 49 of the CTLA-
4 gene, where an A or G nucleotide can be
present, and the onset of autoimmune TED.
Specifically, the study found that the G allele is
associated with a decrease in CTLA-4 function.
The finding suggested that genetic variations
in CTLA-4 may contribute to the development
of orbitopathy. The authors concluded that
further research is needed to confirm these
results and elucidate the mechanisms by
which CTLA-4 SNPs affect immune system
function.[94]

Studies propose that immunotherapy with
ICIs triggers the production of autoantibodies
against thyroid-stimulating hormone receptors.
This phenomenon leads to excessive activity
of immune cells within the orbit, causing tissue
damage and inflammation and contributing to
TED pathogenesis.[95, 96] A case report focused
on a 51-year-old female patient with stage IV
melanoma and no history of thyroid disease.
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The patient showed eye pain, conjunctivitis, and
periorbital edema compatible with TED after
receiving four doses of ipilimumab 10 mg/kg.[58]
Moreover, another study reported a 51-year-
old female with lung malignant melanoma who
showed TED-like symptoms after two infusions
of ipilimumab. This observation suggests the
significant role of CTLA-4 in regulating T-cell
activities in the development of TED.[85] In
accordance with previous findings, another study
found that the use of ipilimumab in a euthyroid
68-year-old woman with metastatic melanoma
intensified the development of TED symptoms
and signs secondary to the treatment including
ophthalmoplegia, bilateral enlargement of all
extra-ocular muscles, and bilateral proptosis.[105]
In a literature review from 1990 to 2017, it was
identified that various ocular and orbital side
effects are associated with the inhibition of ICPs.
These side effects included uveitis, dry eyes,
myasthenia gravis, inflammatory orbitopathy
similar to thyroid and thyroid-like orbitopathy,
keratitis, cranial nerve palsy, optic neuropathy,
serous retinal detachment, and neuroretinitis. The
study highlighted the importance of monitoring for
these side effects when using anti-ICP therapies
due to their potential impact on the eye and
the surrounding structures.[106] A retrospective
study reported that three patients who were
treated with ICIs developed TED-like orbital
inflammation. One patient was a 73-year-old man
with a history of hepatocellular carcinoma who
was diagnosed with bladder urothelial carcinoma
with metastasis to bone and lymph nodes and
was treated with ipilimumab and nivolumab.
Despite normal thyroid function (normal TSH,
T4, TSI, and anti-TPO), the patient experienced
symptoms such as periocular pain, pain with
eye movement, ocular irritation, eyelid swelling,
erythema, and double vision six weeks after
treatment. Ocular inflammatory side effects
were resolved after high-dose intravenous
steroids. The second patient was a 42-year-
old man with metastatic renal cell carcinoma
who developed hyperthyroidism and GD after
treatment with the multi-tyrosine kinase inhibitor
pazopanib. A year later, soon after receiving
anti PD-1 nivolumab, he developed bilateral
upper eyelid retraction, double vision, medial
rectus and inferior rectus muscle enlargement,
and other TED-like symptoms. Thyroid tests

confirmed low TSH and increased T3, T4, and TSI.
Because hypothyroidismwas observed, the patient
underwent thyroid hormone replacement and his
diplopia improved. The third patient was a 51-year-
old man with cutaneous metastatic melanoma
who developed acute hyperthyroidism (low serum
TSH and TSI, increased T3, T4, and anti-TPO)
and TED-like symptoms (acute periocular swelling
and erythema with bilateral exophthalmos) after
therapy with anti-CTLA-4 using the non-FDA-
approved tremelimumab agent. This patient was
also diagnosed with GD associated with TED and
symptomatic inflammation. Because of severe
orbital inflammation, he received intravenous
steroids followed by oral methylprednisolone, and
his orbital inflammation completely resolved after
three months of therapy.[13]

Research findings highlight the fact that orbital
inflammation may be active in patients with TED
because of insufficient ant-inflammatory regulation.
A study showed that the fibroblasts of patients
with TED do not express PDL-1 (measured by
flow cytometry). This study evaluated a total
of eight patients and compared them with five
healthy individuals (controls) who did not have
any ocular complaints or issues. T-cells were
co-cultured together with fibroblasts and PDL-1
was applied exogenously in order to inhibit T-
cell activity. The exogenous expression of PDL-1
resulted in a decrease in T-cell-induced fibroblastic
activity, as well as a reduction in the production of
several key inflammatory factors, including soluble
ICAM-1, IL-6, IL-8, and hyaluronan. (These changes
were measured using ELISA assays.) Furthermore,
external PDL-1 was found to suppress CD40
expression, which was confirmed through flow
cytometry analysis. This inhibition prevented the
activation of both the MAPK and NF-𝜅B signaling
pathways in orbital fibroblasts. It was revealed
that the suppression of CD40 expression through
the use of CD40 siRNA leads to a decrease
in the production of IL-6, IL-8, and hyaluronan.
Additionally, the inhibition of the phosphorylation
of MAPK and NF-𝜅B pathways through the use
of SB203580, PD98059, SP600125, and PDTC
explained the reduction in the expression of
these molecules. Overall, this study suggested
that exogenous PDL-1 administration may be a
potential way to reconstruct immune tolerance in
TED.[107]
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Immune Checkpoint Inhibition (ICI), Ocular
Myasthenia Gravis, and Orbital Myositis

Myasthenia gravis (MG) is an autoimmune disorder
that affects the communication between nerve
cells and muscles. Although this disease is not
associated with orbital inflammation, it shows
autoimmunity on the neuromuscular junction
including extraocular muscles. During the course
of the disease, autoantibodies target postsynaptic
neuromuscular junctions and prevent normal
neuromuscular signal transmission, leading to
muscle weakness and fatigue.[108, 109] Individuals
with MG have a significantly increased risk
of developing TED, with a 2.3-fold greater
likelihood of developing this condition compared
to those without MG.[110, 111] Moreover, it has
been reported that this disease can coexist
in patients with thyroid-associated GD and
may even remain undiagnosed because of
similar clinical features.[112–114] Ophthalmic MG
(OMG) is considered a potential IRAE in patients
receiving ICIs such as pembrolizumab,[115] hence
the importance of close monitoring for ocular
symptoms in these patients. In this regard, a study
reported that 0.12% of patients diagnosed with
cancer had developed MG as a result of nivolumab
therapy. The authors recommended monitoring
for the potential emergence of this condition
following intravenous immunoglobulin therapy.[116]
A number of studies have observed the incidence
of MG after treatment with pembrolizumab[118–123]
and cemiplimab.[124] A study reported a patient
who had symptoms consistent with paralytic
myopathy and orbital myositis and was treated
with pembrolizumab and Lenvatinib.[125] Another
study reported a patient who developed MG-
like ophthalmoplegia and orbital myositis after
treatment with pembrolizumab.[126] A separate
report described a patient with melanoma who
developed bilateral orbital myositis after treatment
with ipilimumab and recovered by corticosteroid
therapy.[127] Although ICIs such as nivolumab may
worsen symptoms of MG in individuals with a
pre-existing disease, it is crucial to acknowledge
that some patients with cancer have exhibited
improved responses to this treatment, suggesting
that it may not be entirely contraindicated in this
population. These observations highlight the
importance of considering the potential benefits
and risks of nivolumab and other ICIs in patients
with MG and cancer, thus allowing for a more

nuanced approach to managing this complex
patient population.[116]

CONCLUSION

The use of checkpoint inhibitors for cancer
treatment can lead to IRAEs, including GD, TED,
myasthenia gravis, and orbital myositis. Healthcare
professionals should closely monitor for these
adverse events, particularly ophthalmological
disorders such as orbitopathy, in patients receiving
these medications. Accordingly, there must be
appropriate communication and collaboration
between oncologists and ophthalmologists in
managing patients undergoing immunotherapy.
Further research is necessary to understand
the long-term effects and potential genetic
predispositions associated with such immune-
related complications and their management
strategy in these patients.
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