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Abstract
The binary (two-component) linear waveguide array that is formed either from
identical waveguides but with alternating distances between adjacent waveguides, or
waveguides with a positive refractive index, but having distinctions in the refractive
index or the waveguide thickness. The exact solution of the coupled wave equations
describing the field distribution over waveguides is found. These solutions describe
the discrete diffraction in the model under consideration.
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1. Introduction

The one dimensional array (or chain) of the waveguides in the linear approximation
represents the system for discrete diffraction realization. In this paper we will consider
the binary linear waveguide array. The unit cell contains two kind of the waveguide,
i.e., A-type and B-type. In slowly varying envelopes of the electric field of the continue
wave radiation in waveguide is governed by the system of equations for coupled
waves [1, 2]. If we would like to consider only discrete diffraction [2, 3] then the
nonlinear properties of the waveguides may be neglected. It cab be considered as
the first approximation.

The system of the equations describing the electromagnetic wave propagation in
the coupled wave approximation takes the following form

𝑖𝜕𝜁𝐴𝑛 = 𝐵𝑛 + 𝐵𝑛−1, 𝑖𝜕𝜁𝐵𝑛 = 𝐴𝑛 + 𝐴𝑛+1, (1)

where 𝐴𝑛 and 𝐵𝑛 are normalized amplitudes of the electric field in waveguide from
𝑛-th unit cell, 𝜁 is the normalized coordinate [1]. We assume that the phase mismatch
is zero.

How to cite this article: A.I. Maimistov and A.A. Dovgiy, (2018), “Field Distribution into Binary LinearWaveguide Array’ in VII International Conference
on Photonics and Information Optics, KnE Energy & Physics, pages 235–240. DOI 10.18502/ken.v3i3.2033 Page 235

Corresponding Author:

A.I. Maimistov

aimaimistov@gmail.com

Received: 28 January 2018

Accepted: 15 March 2018

Published: 25 April 2018

Publishing services provided by

Knowledge E

A.I. Maimistov and A.A.

Dovgiy. This article is distributed

under the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source

are credited.

Selection and Peer-review

under the responsibility of the

PhIO Conference Committee.

http://www.knowledgee.com
mailto:aimaimistov@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 

KnE Energy & Physics PhIO-2018

2. Analytical solution of the base equations

To obtain the solution of the system of equations (1) we can use the generation func-
tion method. Let us introduce the following functions

𝑃𝐴(𝜁 , 𝑦) = ∑
𝑛
𝐴𝑛(𝜁)𝑒𝑖𝑦𝑛, 𝑃𝐵(𝜁 , 𝑦) = ∑

𝑛
𝐵𝑛(𝜁)𝑒𝑖𝑦𝑛

Using the equations (1) we can find the equations for the generation functions 𝑃𝐴

and 𝑃𝐵:

𝑖𝜕𝜁𝑃𝐴 = (1 + 𝑒𝑖𝑦)𝑃𝐵, 𝑖𝜕𝜁𝑃𝐵 = (1 + 𝑒−𝑖𝑦)𝑃𝐴 (2)

From (1) it follows equation 𝜕2𝜁𝑃𝐴 + Ω2𝑃𝐴 = 0, where Ω2 = 4 cos2(𝑦/2). The solution
of this equation takes the form

𝑃𝐴(𝜁 , 𝑦) = 𝐶1𝑒𝑖Ω(𝑦)𝜁 + 𝐶2𝑒−𝑖Ω(𝑦)𝜁

The expression for the generation function 𝑃𝐵 follows from the first equation of (2).
If the initial conditions for the amplitudes 𝐴𝑛 and 𝐵𝑛 are known, we can define the
initial conditions for the generation function

𝑃𝐴(0, 𝑦) = 𝑃𝐴0 = ∑
𝑛
𝐴𝑛(0)𝑒𝑖𝑦𝑛, 𝑃𝐵(0, 𝑦) = 𝑃𝐵0 = ∑

𝑛
𝐵𝑛(0)𝑒𝑖𝑦𝑛.

The initial conditions for 𝑃𝐴 and 𝑃𝐵 allows us to determine integration constants 𝐶1

and 𝐶2. Thus the generation function can be written as

𝑃𝐴(𝜁 , 𝑦) = 𝑃𝐴0(𝑦) cosΩ(𝑦)𝜁 − 𝑖𝑒𝑖𝑦𝑃𝐵0(𝑦) sinΩ(𝑦)𝜁, (3)

𝑃𝐵(𝜁 , 𝑦) = 𝑃𝐵0(𝑦) cosΩ(𝑦)𝜁 − 𝑖𝑒−𝑖𝑦𝑃𝐴0(𝑦) sinΩ(𝑦)𝜁, (4)

where Ω = 2 cos(𝑦/2). Using the orthogonality condition

∫
𝜋

−𝜋
𝑒𝑖𝑘𝑦𝑑𝑦 = 2𝜋𝛿(𝑘),

the solution of the initial system of equations (1) can be written as

2𝜋𝐴𝑛(𝜁) = ∫
𝜋

−𝜋
𝑒−𝑖𝑛𝑦𝑃𝐴(𝜁 , 𝑦)𝑑𝑦, 2𝜋𝐵𝑛(𝜁) = ∫

𝜋

−𝜋
𝑒−𝑖𝑛𝑦𝑃𝐵(𝜁 , 𝑦)𝑑𝑦. (5)
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3. Particular examples of the field distribution
over waveguides

Let us consider the following initial condition that corresponds to strong focusing radi-
ation at 𝜁 = 0: 𝐴𝑛(0) = 𝐴0𝛿𝑛0 and 𝐵𝑛(0) = 0. In this case 𝑃𝐴0 = 𝐴0 and 𝑃𝐵0 = 0. By the
use the expressions (3), (4) and (5) we can write

2𝜋𝐴𝑛(𝜁) = 𝐴0∫
𝜋

−𝜋
𝑒−𝑖𝑛𝑦 cosΩ(𝑦)𝜁𝑑𝑦, 2𝜋𝐵𝑛(𝜁) = −𝑖𝐴0∫

𝜋

−𝜋
𝑒−𝑖𝑛𝑦−𝑖𝑦/2 sinΩ(𝑦)𝜁𝑑𝑦.

To compute the integrals in these expressions we may use the formula by Anger,
which in this case is looking like

cos(𝜂 cos 𝑦/2) = 𝐽0(𝜂) + 2
∞

∑
𝑘=1

(−1)𝑘𝐽2𝑘(𝜂) cos 𝑘𝑦, (6)

sin(𝜂 cos 𝑦/2) = −2
∞

∑
𝑘=1

(−1)𝑘𝐽2𝑘−1(𝜂) cos[(2𝑘 − 1)𝑦/2]. (7)

Substitution of the equation (6) into (5) results in the following expression (here we
will use the term 𝜂 = 2𝜁)

2𝜋𝐴𝑛(𝜁) = 𝐴0𝐽0(𝜂)∫
𝜋

−𝜋
𝑒−𝑖𝑛𝑦𝑑𝑦 + 𝐴0

∞

∑
𝑘=1

(−1)𝑘𝐽 2𝑘(𝜂)∫
𝜋

−𝜋
𝑒−𝑖𝑛𝑦 (𝑒𝑖𝑘𝑦 + 𝑒−𝑖𝑘𝑦) 𝑑𝑦.

Hence, at n=0 we have 𝐴0(𝜁) = 𝐴0𝐽0(2𝜁). At 𝑛 ≥ 1 it follows that

𝐴𝑛(𝜁) = (−1)𝑛𝐴0𝐽2𝑛(2𝜁). (8)

The second equation of (1) may be used to obtain the amplitudes 𝐵𝑛(𝜁). By using
the expression (8) for 𝐴𝑛(𝜁), one can write

𝐴𝑛+1 + 𝐴𝑛 = 𝐴0(−1)𝑛 [𝐽2𝑛(𝜂) − 𝐽2𝑛+2(𝜂)] .

As

𝑑𝐽𝑛(𝑧)
𝑑𝑧 = [𝐽𝑛−1(𝑧) − 𝐽𝑛+1(𝑧)] ,

the equation for 𝐵𝑛(𝜁) can be rewritten as

𝑖𝜕𝜁𝐵𝑛 = 2𝑖 𝑑𝑑𝜂𝐵𝑛 = 𝐴0(−1)𝑛
𝑑
𝑑𝜂𝐽2𝑛+1.

It follows that

𝐵𝑛(𝜁) = −𝑖𝐴0(−1)𝑛𝐽2𝑛+1(2𝜁). (9)
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Thus the distribution of the field amplitudes over waveguides in array under con-
sidered initial conditions is presented by the expressions (8) and (9). These equations
describe the discrete diffraction in binary waveguide array under the condition of the
strong focusing at 𝜁 = 0.
Let us consider the casewhere the bothwaveguides in unit cell 𝑛 = 0 are illuminated.

Initial conditions are following 𝐴𝑛(0) = 𝐴0𝛿𝑛0 and 𝐵𝑛(0) = 𝐵0𝛿𝑛0. In this case we have
𝑃𝐴0 = 𝐴0 and 𝑃𝐵0 = 𝐵0. The generation function can be written as

𝑃𝐴(𝜁 , 𝑦) = 𝐴0 cosΩ(𝑦)𝜁 − 𝑖𝑒𝑖𝑦𝐵0 sinΩ(𝑦)𝜁,

𝑃𝐵(𝜁 , 𝑦) = 𝐵0 cosΩ(𝑦)𝜁 − 𝑖𝑒−𝑖𝑦𝐴0 sinΩ(𝑦)𝜁.

Using the (5) we can write

2𝜋𝐴𝑛(𝜁) = 𝐴0∫
𝜋

−𝜋
𝑒−𝑖𝑛𝑦 cosΩ(𝑦)𝜁𝑑𝑦 − 𝑖𝐵0∫

𝜋

−𝜋
𝑒−𝑖𝑛𝑦+𝑖𝑦/2 sinΩ(𝑦)𝜁𝑑𝑦,

2𝜋𝐵𝑛(𝜁) = 𝐵0∫
𝜋

−𝜋
𝑒−𝑖𝑛𝑦 cosΩ(𝑦)𝜁𝑑𝑦 − 𝑖𝐴0∫

𝜋

−𝜋
𝑒−𝑖𝑛𝑦−𝑖𝑦/2 sinΩ(𝑦)𝜁𝑑𝑦

Two incoming here the integrals have been found previously

∫
𝜋

−𝜋
𝑒−𝑖𝑛𝑦 cosΩ(𝑦)𝜁𝑑𝑦 = 2𝜋 [𝐽0(𝜂)𝛿𝑛0 + (−1)𝑛𝐽2𝑛(𝜂)] ,

∫
𝜋

−𝜋
𝑒−𝑖𝑛𝑦−𝑖𝑦/2 sinΩ(𝑦)𝜁𝑑𝑦 = 2𝜋(−1)𝑛𝐽2𝑛+1(𝜂).

The third integral can be defined by the similar way. It results in following expression

∫
𝜋

−𝜋
𝑒−𝑖𝑛𝑦+𝑖𝑦/2 sinΩ(𝑦)𝜁𝑑𝑦 = 2𝜋(−1)𝑛+1𝐽2𝑛−1(𝜂), 𝑛 ≥ 1.

So can immediately write down expressions for the distributions of the electric field
amplitudes over waveguides for the selected initial conditions

𝐴𝑛(𝜁) = 𝐴0𝐽0(2𝜁)𝛿𝑛0 + (−1)𝑛𝐴0𝐽2𝑛(2𝜁) + 𝑖(−1)𝑛𝐵0𝐽2𝑛−1(2𝜁),

𝐵𝑛(𝜁) = 𝐵0𝐽0(2𝜁)𝛿𝑛0 + (−1)𝑛𝐵0𝐽2𝑛(2𝜁) + 𝑖(−1)𝑛𝐴0𝐽2𝑛+1(2𝜁),

where 𝑛 = ±1, ±2, .... The third terms in these expressions represent the interference
phenomena in waveguide array.
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4. Conclusion

This distribution of field strengths describes discrete diffraction in a binary array of
waveguides. For more complex cases of the initial conditions the expressions for the
electric fields in waveguides contain terms that account for interference fields in the
neighboring waveguides. It should be noted that if the initial conditions are selected
as 𝐴𝑛(0) = (−1)𝑛𝐴0 and 𝐵𝑛(0) = (−1)𝑛𝐵0, then the diffraction is absent. The equations
(1) show that under these conditions the fields in waveguides are invariants. However,
the flat band [5–7] in the spectrum of the linear waves is absent, as the number of
nodes in the unit cell is less than three. In the spectrum there are only two branches
that meet dispersive waves along the chain.
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