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Abstract
Gold nanoparticles attract attention for the use in radiation therapy of tumors due
to the ability to enhance the efficacy of ionizing radiation. The magnitude of the
radiosensitizing effect depends on the parameters of the nanoparticle, in particular
on the modification of the surface. In the present work, the spectrum of secondary
particles generated in a gold nanoparticle virtually irradiated with 60Со gamma rays as
a result of surface modification by a polyethylene glycol shell was studied. The Monte
Carlo calculations revealed that modification of the nanoparticle’s surface changes
the spectrum of secondary particles. The most robust was the loss in low-energy
electrons (51%) whereas the yield of Compton electrons increased by 1.27 times. At
the same time, no statistically significant changes were observed in the spectrum of
secondary photons and photoelectrons. Simulation of the formation and distribution of
secondary electron radiation makes it possible to evaluate the parameters important
for the rational design of antitumor nanoradiosensitizers based on chemical elements
with a high atomic number.
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1. Introduction

Nanoparticles (NPs) of high-Z elements (e.g., gold (GNPs): Z𝐴𝑢 = 79) are perspective
candidates for the design of antitumor radiosensitizers because of their large cross
section with photons [1]. GNPs are the most promising due to their physicochemical
properties and high biocompatibility. GNPs absorb the energy of ionizing radiation and
generate secondary particles such as photo-, Compton and ionizing electrons. These
particles distribute their energy in different areas depending on LET. The low energy,
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short-range ionizing electrons (Auger, Coster-Kronig and fluorescent ones) deposit
very high energies in the close proximity to the GNP surface. The size, shape and
surface coating of NPs can influence the radiosensitization effect. For targeted delivery
to the tumor and prevention of aggregation in high ionic strength media, the surface of
NP can be modified by different agents including polyethylene glycol (PEG). Although
PEGylated GNP have demonstrated the effect of radiosensitization, the impact of NP
surface coating is poorly understood. This effect depends on coating thickness [2];
also, surface functionalization can dramatically decrease the production of radicals [3].
Furthermore, surface coating modifies dose distribution around GNP [4]. Despite these
facts theMonte-Carlo studies frequently disregard GNP surface coatings. In the present
work the effect of PEGylation on the formation of a secondary radiation spectrum
emitted by a GNP under the action of gamma radiation was investigated by Monte-
Carlo simulation.

Figure 1: Scheme of Monte-Carlo simulations.

2. Materials and methods

We performed a Monte-Carlo simulation (a Geant4 code) to investigate the influence
of ionizing radiation on low energy secondary electrons. A 17 nm GNP was modified
with the PEG shell (thickness 8.5 nm; M𝑃𝐸𝐺 = 5000 g/mol) [5]. GNP were virtually
irradiated with a circle photon beam (D = 60 nm) using a 60Со source (1.17 MeV and
1.33 MeV) (Figure 1). The amounts of secondary electrons that left the gold core and
the PEG shell were recorded and analyzed.
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3. Results and discussions

Due to the high atomic number (Z𝐴𝑢 = 79) the GNPs absorbs the energy of ioniz-
ing radiation more effectively then low-Z biological tissues. In turn, GNPs generate
secondary radiation which consists of secondary particles: photoelectrons, Compton
and ionization electrons (Auger, Coster-Kronig, fluorescence). Upon irradiation the two
processes occur within the shell: 1) energy absorption of secondary radiation, gener-
ated by interaction of primary photons with NP gold core; 2) generation of secondary
radiation caused by interaction of primary photons with the PEG shell. These processes
depend on shell’s material and energy of primary photons. At high photon energies,
the number of absorbed low-energy electrons significantly exceeds the number of
electrons generated in the envelope.

Secondary photons have a much larger mean free path than low-energy secondary
electrons, so the absorbed dose created around the NP is formed mainly by electrons.
Thus, secondary electrons are responsible for the radiosensitizing effect of NP.

  

Figure 2: Secondary energy spectra of two models: A) without PEG shell; B) with PEG shell.

We found that the PEG shell is critical for spectral characteristics of low-energy
ionization electrons and Compton electrons (Figure 2). No changes were revealed for
photoelectrons and secondary photons. These phenomena are explained by the fact
that ionization electrons have low energies and are more effectively retained inside
the shell, especially when their mean free path is comparable to the shell’s thickness.
Even though PEG consists of light chemical elements, the shell forms an additional
barrier for low energy electrons. To initiate water radiolysis, a key event in tumor cell
death by radiation, electrons have to leave not only the gold core but also the PEG
shell. About one half (51%) of low-energy ionizing electrons generated in the gold
core was absorbed by the PEG shell. As a result, ionization electrons lost ∼35% of their
total energy.
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The number of photoelectrons varied insignificantly since their large kinetic energy
and a range prevent the absorption in the shell. On the other hand, the Compton
scattering prevails in the interaction of primary photons with the shell material. As
a result, more Compton electrons (1.27-fold) were generated within the shell, thereby
significantly increasing the overall electrons yield from the nanoparticle.

4. Conclusions

Surface coating is an integral part of the design of NPs for in vivo use. The spectrum of
secondary electrons upon 60Co irradiation of PEGylated (thickness 8.5 nm; M𝑃𝐸𝐺 = 5000
g/mol) GNP were investigated by Monte-Carlo simulation. More than half (51%) low-
energy ionization electronswere absorbed by the PEG shell. The yield of Compton elec-
trons increased 1.27-fold. No changes were revealed for photoelectrons and secondary
photons. Thus, surface decoration, an important component of the functional design
of nanoradiosensitizers, is meaninglful both for interaction with biological objects and
for modification of dose distribution.
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